
1. Introduction
Understanding flow and transport in porous media is crucial for understanding complex hydrogeologic systems, 
designing contaminant remediation strategies, and utilizing subsurface energy resources. Mechanistic understand-
ing of how geologic heterogeneity controls the associated reactive transport, colloidal transport, or multiphase 
flow processes first requires an accurate 3-D parameterization of multiscale intrinsic permeability. Despite this 
necessity, approaches for non-destructive experimental measurement of multi-scale permeability in geologic core 
samples remains a critical challenge. Current approaches for measuring spatially variable permeability are experi-
mentally challenging or laborious (Krause et al., 2013), computationally expensive (Guo et al., 2021; Mostaghimi 
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Plain Language Summary The first step in understanding how water and contaminants are 
flowing in the subsurface is to describe the ease at which fluid can flow—a hydrogeologic property termed 
permeability. Variation in permeability is an intrinsic property of geologic materials that arises due to 
differences in the underlying geologic processes that generated the materials. The use of medical imaging 
techniques in the field of hydrogeology enables scientists to better understand how water and contaminants flow 
through geologic porous media. This study leverages these imaging techniques combined with recent advances 
in deep learning to develop a new way for measuring permeability variation in geologic materials. In this study, 
we use a deep learning model to perform 3-D permeability prediction. The model is trained by guiding the 
model to identify the characteristics in the transport data that provide insights on permeability distribution. 
Compared to traditional mathematical modeling approaches, the trained deep learning model significantly 
reduces the computational cost while accurately predicting the 3-D permeability distributions in real geologic 
materials.
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et al., 2013), and typically rely on sample-specific porosity-permeability (Chilingar, 1964; Chilingarian, 1991; 
Han et al., 2019) or capillary pressure scaling assumptions (Krause et al., 2013; Rabinovich, 2017).

A range of methods have been developed to approximate spatially-variable permeability in geologic samples 
(Krause, 2012; Krause et al., 2013; Rabinovich, 2017). The approach developed by Krause et al. (2013) utilizes 
multiphase core-flooding experiments, X-ray computed tomography (X-ray CT), mercury injection capillary 
pressure data, and Leverett-J scaling to estimate sub-core permeability variation. This scaling approach has been 
validated in sandstone rocks that have intra-sample pore size distribution similarities. More commonly, measure-
ments of porosity are implemented directly into empirical relationships (Chilingar, 1964; Chilingarian, 1991) to 
estimate local permeability. While strong correlations between porosity and permeability often exist in geologic 
materials, the empirical form of these correlations depends on rock type, the extent of lithification, and sedi-
mentological properties of the rock. For instance, in the model of Chilingar (1964), the same porosity in coarse 
sand could correspond to two different permeability values that differ by 300%. This discrepancy is due to the 
geology-specific nature of these relations and is difficult to quantify when the composition and lithification of 
the geologic materials are unknown.

In carbonates, multi-scale heterogeneity often generates large variation in both permeability and porosity distri-
butions within a sample. Previous studies have shown that variance in the porosity-permeability relationship 
increases with decreasing sample volume for carbonate materials (Vik et al., 2013). In many carbonates, a signif-
icant portion of inter-particle porosity is due to the presence of vugs—pores larger than the typical grain size 
(Lucia, 1983). The porosity-permeability relationship can vary significantly depending on the connectivity of the 
vugs and therefore be challenging to characterize or generalize. For example, the presence of isolated vugs signif-
icantly increases the porosity but it does not lead to a proportional increase in permeability. Alternatively, perme-
ability is often disproportionately high for inter-connected vugs (Lucia, 1983). These characteristics pose unique 
challenges to applying traditional experiment-based permeability inversion methods in carbonate samples.

While the most widely used imaging tool in hydrogeology is X-ray CT, other imaging approaches that can provide 
complementary dynamic quantification of continuum-scale transport processes—such as positron emission 
tomography (PET)—are emerging. Emission tomography methods are used to detect and reconstruct 3-D images 
based on photons emitted from radiolabeled fluids. This difference in image acquisition and reconstruction 
provides a complementary approach for quantifying different properties of solute transport in geologic materials 
(Zahasky et al., 2020). By radiolabeling and imaging the solutes directly, PET imaging excels at obtaining fast, 
time-lapse, high signal-to-noise images of solute concentration in geologic materials. This has opened up new 
opportunities to understand fundamental aspects of flow and transport processes, such as solute tailing driven 
by diffusion into microporous carbonates (Kurotori et  al., 2019), flow path alteration in fractured carbonates 
(Brattekas & Seright, 2017), herbicide transport in soil columns (Kulenkampff et al., 2018), multiphase flow 
(Ferno et al., 2015), multi-scale dispersion (Zahasky & Benson, 2018), and the impact of heterogeneity created 
by structural features such as deformation bands (Romano et al., 2020).

Positron emission tomography generates 3-D solute concentration maps at user-defined time steps. A PET image 
at a single time step often consists of over ten thousand concentration measurements throughout a sediment 
column or geologic core; an entire PET scan may consist of over a million concentration measurements. These 
massive time-lapse datasets are the result of the millimeter-scale discretization of PET images, termed voxels. The 
application of these imaging methods enables the generation of massive volumes of data not typically available 
from traditional hydrogeologic laboratory or field approaches. These datasets thus provide orders of magnitude 
more measurements for heterogeneity characterization than even the most heavily instrumented field sites (Boggs 
& Adams, 1992; Mackay et al., 1986). These image-based observations combined with recently developed deep 
learning tools provide a unique opportunity to advance understanding of multi-scale transport processes in heter-
ogeneous geologic materials.

Convolution neural networks (CNNs) are a subcategory of deep learning models that are designed for process-
ing data that has grid-like topology to extract multi-scale features from high-dimensional input (Goodfellow 
et al., 2016). By connecting each convolutional layer with all its subsequent layers, Densely Connected Convo-
lutional Networks (DenseNet) fully leverage the hierarchical advantages of CNN by encouraging feature propa-
gation, sharing, and reuse among all the layers (G. Huang et al., 2017). The number of parameters in a network 
increases as layers are added to a network, theoretically improving the potential performance of the network. To 
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overcome some of the challenges that arise in training deeper networks, a residual-in-residual structure can be 
applied to all the DenseNet blocks (X. Wang et al., 2018; Zhang et al., 2018). Built from the residual-in-residual 
dense block, the architecture of the encoder-decoder based CNN is defined by hyperparameters such as kernel 
size, stride, padding, and the number and growth rate of layers. Once the model architecture has been defined, 
the model is then trained—a process requiring additional hyperparameters such as batch size, learning rate, and 
optimizer selection—to learn the relationship between the input data space (e.g., imaging data) and desired 
model output data space (e.g., permeability). Using a subset of the input data, termed the training dataset, the 
network predictions are compared against the training targets through loss functions. The loss is minimized by 
back-propagating and updating the network weights using a different subset of input data, termed the validation 
dataset. Finally, an unbiased evaluation of the trained network is performed on a third subset of data, termed the 
test dataset.

In recent years, CNNs have been utilized for a range of image-based inversion tasks in fields ranging from 
medical imaging (Adler & Ozan, 2017; Barbastathis et al., 2019; McCann et al., 2017) to geophysics (Kim & 
Nakata, 2018). Using CNNs for inversion tasks has been shown to address issues of ill-posedness by reducing 
the effects of noise (Barbastathis et al., 2019), capturing finer resolution features (Kim & Nakata, 2018), and 
learning a generalizable regularizer during the training process (McCann et al., 2017). In addition to inversion 
tasks, CNNs have been constructed for a range of hydrogeologic applications including parametrizing hydro-
geological properties in highly complex digital rock images (Kamrava et al., 2021; Sudakov et al., 2019; Tian 
et al., 2020), groundwater inventory maps (Panahi et al., 2020), and synthetic hydrogeological parameter maps 
(Canchumuni et al., 2019; Mo et al., 2019c). A deep dense convolution encoder-decoder network was developed 
(Zhu & Zabaras, 2018) and expanded (Mo et al., 2019a, 2019b; Tang et al., 2021; Zhong et al., 2019) to provide 
a surrogate model to replace full-physics forward models. These methods have successfully replicated forward 
model results with dramatic reductions in computational cost, but have not been applied directly to experimen-
tally constrained permeability inversion tasks. At the pore scale, CNNs have been used to determine the average 
permeability or dispersion of a geologic sample from a pore-scale digital rock image (Kamrava et al., 2021; Suda-
kov et al., 2019; Tian et al., 2020). These digital workflows—reviewed in detail by Y. D. Wang et al. (2021)—are 
a promising avenue for experiment-free parameterization of flow and transport properties in geologic materials; 
however, they require repeated discrete analysis to characterize permeability spatial variation at the continuum 
scale.

In this study, we first trained an encoder-decoder based CNN to determine the 3-D permeability map of geologic 
core samples based on PET imaging-derived solute transport data. This approach of using a CNN for parameter 
inversion is fundamentally different from traditional numerical inversion approaches because rather than iterat-
ing a simulation model to fit a specific geologic sample, the CNN is trained to estimate the permeability of any 
geologic sample within the parameter space represented by the training data. The model was trained and tested on 
a large synthetically generated dataset and then further tested with PET imaging datasets from one sandstone and 
three carbonate rock cores. A second CNN was then constructed that utilizes X-ray CT data as an additional input 
channel to determine the value of rock structure information in predicting 3-D permeability. Predicted permeabil-
ity maps from the trained network were fed into a forward flow and transport numerical model. These modeled 
solute transport data were then directly compared with the experimental measurements to validate the applicabil-
ity of a single trained CNN for permeability inversion using image-based datasets collected in sedimentary rocks.

2. Methods
2.1. Experimental Positron Emission Tomography Data Acquisition

Four different geologic cores with a range of lithologies and permeability structures were used to provide robust 
experimental datasets to test the CNN inversion approach. The samples include a laminated Berea sandstone 
(Zahasky & Benson, 2018, 2019), an Indiana limestone, an Edwards Brown limestone (Kurotori et al., 2020), and 
a Ketton limestone (Kurotori et al., 2019, 2020). All of the samples were 5.04 cm in diameter and between 10 and 
10.3 cm long. See the referenced studies and Table S1 in the Supporting Information for additional details of the 
core sample properties.

A detailed description of the PET data acquisition, imaging system, and experimental platform can be found in 
Zahasky et al. (2019). Briefly, the cores were loaded into a flow-through coreholder that enabled the application 
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of confining pressure and thus no-flow boundary conditions on the cylindrical faces of the samples. Samples 
were saturated with water by first flushing the sample with low-pressure CO2 and then injecting water into the 
inlet face of the sample while applying backpressure at the outlet face to prevent gravity-driven desaturation. The 
differential pressure was monitored, and steady-state conditions were determined to have been reached when 
the differential pressure stabilized. All of the presented experiments were performed at a flow rate of 2 mL/
min with pore water velocities spanning from 0.245 cm/min to 0.590 cm/min. Core-average permeability was 
calculated with Darcy's Law using the steady-state differential pressure, core geometry, and fluid injection rate. 
The cores had a sample-average permeability spanning from 23 mD to 1920 mD (Table S1 in the Supporting 
Information S1).

To begin the imaging experiments, a positron-emitting radiotracer—fludeoxyglucose ( 18F-FDG)—was 
diluted in water to reach the optimal radioactivity concentration for minimizing imaging noise (Zahasky 
et  al.,  2019). Fludeoxyglucose is a commercially available conservative tracer with a half-life of 109.7  min. 
The PET scans were performed using a Siemens pre-clinical Inveon DPET scanner. Once a scan was started, 
pulses of radiotracer—between 0.02 and 0.10 pore volumes—were injected into the samples and displaced 
with water containing no  18F-FDG. The images were reconstructed and processed with voxel dimensions of 
0.2329 × 0.2329 × 0.2388 cm 3. This voxel dimension size was determined as the smallest volume that captured 
the continuum scale heterogeneity of the four geologic cores used in this study. This determination was based 
on representative elementary volume (REV) analysis of continuum properties in similar geologic cores (Jack-
son et al., 2020; Zahasky et al., 2020) and theoretical metrics of the minimum permeability REV derived from 
Navier-Stokes simulations (Narsilio et al., 2009) and using previously measured sample grain size distributions 
(Kurotori, 2019). Images of the radiotracer distributions at two different times in the four rock cores are illustrated 
in Figure 1. This figure highlights the significant variation in transport behavior and the multiscale permeability 
heterogeneity present in each of the cores used in this study.

2.2. Arrival Time Analysis

Arrival time analysis was used to efficiently summarize the impact of spatial permeability variation on radio-
tracer transport while reducing the time-lapse experimental PET datasets from four dimensions (x, y, z, t) to three 
dimensions (x, y, z). This dimension reduction was performed by calculating the quantile arrival time for every 
voxel in the core.

𝑄𝑄(𝜏𝜏) = ∫
𝜏𝜏

0

𝐶𝐶𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡∕∫
∞

0

𝐶𝐶𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 (1)

Here Ci(t) is the concentration of voxel i within a reconstructed 3-D PET image as a function of time (t) and τq is 
the time when Q(τq) reaches the qth quantile. The 0.5 quantile (τ0.5) is the median arrival time and corresponds to 
the time when half of the solute has passed through the voxel. Using the discrete form of Equation 1, the arrival 
time values were calculated for every voxel location in the imaged sample. The quantiles were calculated based on 
the numerical interpolation and integration of the breakthrough curve in every voxel in the core samples. The τ0.5 
arrival time was used in this study and an example of the resulting 3-D arrival time map for the Berea sandstone 
sample is illustrated in Figure 2.

In addition to dimension reduction, utilization of quantile-based arrival time rather than the time-lapse radiotracer 
concentration data has several key advantages for inversion applications (Dagan et al., 1992; Harvey & Gore-
lick, 1995). First, arrival time values are independent of solute pulse volume and initial concentration, enabling 
the comparison of experiments with different pulse volumes and different starting concentrations. Second, the 
application of the quantile-based arrival time is especially advantageous when working with experimental data 
because the integration of the breakthrough curves averages out much of the imaging measurement error (Harvey 
& Gorelick, 1995). Third, the arrival time is insulated from variations in hydrodynamic and numerical disper-
sion, particularly at the 0.5 quantile (Dagan & Nguyen, 1989). This is important for numerically generated neural 
network training data as it allows for comparison with experimental data without knowledge of experimental 
dispersion behavior and without needing to account for the potential impacts of numerical dispersion. This is 
also advantageous for the comparison of different geologic materials that exhibit strong variation in mechanical 
dispersion and tailing driven by microporosity (Kurotori et al., 2019). The quantile-based arrival time is less 
susceptible to solute tailing and background measurement noise than the normalized first moment because the 
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first moment is a time-weighted integration of the voxel breakthrough curves. An example of this comparison for 
two different voxels of the PET data in the Berea sandstone and the Ketton limestone is shown in Figure S1 in 
the Supporting Information S1.

To accentuate the structural similarity and amplify the signal of subtle differences in arrival times, the underlying 
linear trend in the calculated arrival times—due to the bulk flow from the inlet to the outlet of the samples—was 
removed. This linear trend can mask arrival time variation and is fundamentally different from the underlying 
permeability structure of the samples as illustrated in Figure 2. The arrival time map was first normalized to 
nondimensional units of pore volumes injected (upper right image in Figure 2), and the nondimensionalized map 
was then subtracted from the linear trend, resulting in what we call an arrival time difference map as shown in 

Figure 1. Example PET imaging time frames from each of the four cores used in this study. The pore volume injected (PV) 
is indicated for each image and are referenced from the start of tracer injection. The difference in the displayed pore volumes 
is a result of slight differences in temporal image reconstruction. The Berea sandstone core (displayed at the top row) has 
a slightly larger color bar scale because the pulse volume of tracer injected was 4 mL as opposed to the three limestone 
cores (displayed in rows two, three, and four) that had pulse volumes of 2 mL. The voxel size dimensions for all models are 
0.2329 × 0.2329 × 0.2388 cm 3. These images highlight the local sub-core permeability heterogeneity present in all four cores.
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the bottom plot of Figure 2. This representation of arrival times more closely reflects the underlying permeability 
structure. Greener voxels in the bottom plot of Figure 2 have arrival times faster than the core average as a result 
of higher permeability zones. Pinker voxels in the bottom plot of Figure 2 have arrival times slower than the core 
average, thus are likely corresponding to regions of lower permeability. These arrival time difference maps were 
used as input for the CNN inversion workflow.

2.3. Experimental Porosity Map Calculation

The traditional approach for measuring porosity maps in geologic materials is to use X-ray CT (Akin & 
Kovscek, 2003). The 3-D porosity map (ϕ) is calculated via the linear scaling expression in Equation 2. This 
scaling requires a dry scan of the sample (Za), and a second scan when the sample is fully saturated with water 
(Zw). The difference between these scans is then scaled by using the difference between pure air and water phase 
Hounsfield X-ray CT numbers (Δa,w = 1000). An illustration of the porosity in the Berea sandstone calculated 
with Equation 2 is illustrated in the left plot of Figure 3.

𝝓𝝓 =
𝒁𝒁𝑤𝑤 −𝒁𝒁𝑎𝑎

Δ𝑎𝑎𝑎𝑤𝑤
 (2)

For application to permeability inversion with a neural network, it is the spatial structure of the porosity map—as 
opposed to the actual values of porosity—that may provide the most valuable information to improve the 3-D 
permeability map prediction. The true values of porosity may not be useful because the network was trained on 
datasets that lack a specific porosity-permeability relationship, as will be described in the following section. 
Therefore, the inversion workflow was also tested using a single dry X-ray CT scan, where the Hounsfield 
values were scaled to a typical porosity range. This simplification has the advantage of reduced scanning costs 
and experimental data collection times. In addition, a single or average set of dry scans can also have less meas-
urement noise due to the lack of registration errors that may arise when collecting X-ray CT scans throughout 
an experiment. The numerical subtraction of CT data in Equation 2 leads to an amplification of these potential 
registration errors. Furthermore, since the density of dry air is much less than water, a dry X-ray CT scan provides 
a higher contrast between high porosity and low porosity regions of a sample. A risk of using scaled X-ray CT 

Figure 2. (Upper left) Quantile (0.5) arrival time map collected in the Berea core using the PET data illustrated in the top 
of Figure 1. (Upper right) Quantile arrival time map in normalized units of pore volumes of water injected since the start of 
tracer injection. (Bottom) Quantile arrival time difference map in units of pore volumes.
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scans is that they are more susceptible to X-ray CT imaging artifacts such as beam hardening that are reduced 
or removed during porosity linear scaling calculations (Akin & Kovscek, 2003). In addition, the lack of meas-
ured porosity when using scaled X-ray CT maps requires the use of core-average porosity for numerical model 
parameterization.

To test the network with single X-ray CT scan data, dry scans were normalized and then scaled to have a range 
from 0.15 to 0.25 using Equation 3, similar to typical porosity ranges in consolidated rocks.

�̃�𝝓 = 0.10 ⋅ ‖𝒁𝒁𝑎𝑎‖ + 0.15 (3)

An illustration of the rescaled dry X-ray CT scan in the Berea sandstone calculated with Equation 3 is presented 
in the right plot in Figure 3. All PET and X-ray CT datasets described in this study are provided in the repository 
referenced in the Acknowledgments.

2.4. Synthetic Training Dataset Generation

Two different synthetic datasets were generated to train and test the neural network for 3-D permeability inver-
sion from image-based datasets. The first dataset was composed of arrival time difference maps calculated from 
numerical solute transport simulations on synthetically generated permeability maps with homogeneous porosity. 
The second dataset was composed of arrival time difference maps with the same synthetically generated perme-
ability but with the addition of a corresponding heterogeneous porosity map. For each dataset, a total of 26,000 
numerically simulated data pairs were generated.

2.4.1. Training Dataset Without Porosity

Permeability maps were generated with the exponential covariance random field generation algorithm using the 
open-source Python codes from Müller and Schüler (2021). Latin hypercube sampling (Deutsch & Deutsch, 2012; 
Mckay et al., 1979; Tartakovsky et al., 2020) was used to generate the permeability map parameter space defined 
by a mean permeability from 10 mD–20 D; log10 standard deviation from −1.7 to 9.9 mD; spatial correlation 
length from 0.25 to 12.5 cm in the x, y, and z directions; rotation from 0 to 90° in each of the x, y, and z planes. 
The minimum correlation length was chosen to equal the numerical model discretization such that very little 
permeability correlation was present in some of the permeability maps. The sampling also included a variable 
number (0–2) of heterogeneous dummy slices added to the model inlet face. The purpose of the variable number 
of heterogeneous dummy slices was to improve network generalization by creating subtle perturbations of solute 
distribution in the synthetic datasets that are intrinsically present in experimental inlet boundary conditions. The 
strength of these experimental boundary effects has been observed in other in situ transport imaging studies and 
are difficult to predict a priori (Lehoux et al., 2016). This range of training dataset properties spans the range of 
consolidated and unconsolidated geologic materials that are typically found in unfractured aquifers and conven-
tional reservoirs.

The solute arrival time in all grid cells was determined by running steady-state flow simulations on the synthetic 
3-D permeability maps using MODFLOW 2005 (Harbaugh,  2005) and MT3DMS (Zheng & Wang,  1999) 

Figure 3. (Left) Porosity map of Berea sandstone calculated using linear scaling with Equation 2. (Right) Air-saturated X-ray 
CT scan of Berea sandstone scaled to a typical porosity range using Equation 3.
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scripted in FloPy (Bakker et al., 2016). To mimic the experimental settings, the flow simulation was done on 
synthetic cylindrical cores with a diameter of 5 cm and length of 10 cm. To replicate this cylindrical shape with 
a no-flow boundary, permeability and porosity values outside the cylindrical profile were set to zero. The flow 
rate was set to 2 mL/min and back-pressure was assigned to 70 kPa. The synthetic 3-D permeability and modeled 
arrival time difference maps were all represented with dimensions of 20 × 20 × 40, nearly identical to the discre-
tization of the 3-D PET arrival time maps obtained from experiments discussed in Section 2.1. The grid cells for 
all models have dimensions of 0.233 × 0.233 × 0.25 cm 3, such that they are nearly identical to the voxel size in 
the processed PET images. The solute transport model results were used to calculate 3-D arrival time maps using 
the same quantile calculation, pore volume normalization, and differencing procedure described in Section 2.2.

An additional physical constraint available from routine experimental measurements is the sample average 
permeability. For each training dataset, the average permeability of each sample 𝐴𝐴

(
�̄�𝑘
)
 was numerically calculated 

using Darcy's Law solved for 𝐴𝐴 �̄�𝑘 .

�̄�𝑘 =
𝑄𝑄𝑡𝑡

𝐴𝐴
⋅ 𝜇𝜇 ⋅

𝐿𝐿

Δ𝑝𝑝
 (4)

The flow rate (Qt) through the synthetic core was set equal to the model flow rate of 2 mL/min. The cross-sec-
tional area A was based on the modeled core cross-sectional area and L was the length of the model core. The vari-
able μ was defined by the viscosity of water and Δp was the pressure drop calculated by subtracting the average 
pore pressure at the outlet slice minus the average pore pressure at the inlet slice in the steady-state MODFLOW 
model. The calculated average permeability of the core was then represented by a 20 × 20 tensor padding at the 
left boundary of the simulated arrival time difference map. The final dimension of every input dataset was then 
20 × 20 × 41. Adding the average permeability as a boundary condition to the inversion process is key to preserv-
ing the uniqueness of the arrival time difference-permeability relationship.

2.4.2. Training Dataset With Porosity

A second training dataset was constructed to explore the impact of porosity heterogeneity and porosity struc-
ture information on the permeability inversion. There are two potential advantages to incorporating porosity as 
an additional input. First, geometric information associated with porosity map in geologic cores can be accu-
rately characterized through X-ray CT (Akin & Kovscek,  2003; Glatz et  al.,  2016; Minto et  al.,  2017; Vega 
et al., 2014). Second, core-averaged porosity has been shown to have a geometric correlation with permeability 
(Chilingar, 1964; Chilingarian, 1991). By using both the arrival time difference map and porosity map as the 
inputs for the inversion process, this second network aimed to improve the accuracy of permeability map inver-
sion by providing insights on the geometric distribution of permeability heterogeneity in the core. In this dataset, 
the same synthetic permeability maps as the first training set were used, but synthetic 3-D porosity maps corre-
sponding to each permeability map were added as an additional input channel.

The synthetic porosity maps were generated by utilizing an empirical porosity-permeability function given by 
Equation 5.

𝜙𝜙𝑖𝑖 =

ln(𝑘𝑘𝑖𝑖)
𝑎𝑎

+ 𝑏𝑏

100

 (5)

Here ϕi is the porosity of a given grid cell and ki is the permeability in millidarcy of grid cell i in a given training 
realization. The variable a is a constant ranging from 0.25 to 1, and b is another constant ranging from 5 to 20. 
These empirical parameters varied with each training set realization and were sampled with the Latin hypercube 
sampling of the permeability map characteristics described in the previous section. Varying the constants a and b 
in each training realization enables the generation of a porosity map corresponding to a wide range of sedimen-
tary rocks types. An illustration of the variation in porosity-permeability relationships is illustrated in Figure S2 
in the Supporting Information S1 by plotting the porosity-permeability relationship of all 500 test set realizations. 
Each synthetic porosity map was then concatenated to its corresponding arrival time map as an additional input 
channel. To maintain consistent input channel sizes, the average permeability of the core 𝐴𝐴

(
�̄�𝑘
)
 was also padded 

at the left boundary of the 3-D porosity data resulting in a dimension of 20 × 20 × 41. Two different randomly 
selected training realizations generated with the above workflow are illustrated in the 3-D plots in Figure S3 in 
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the Supporting Information S1. The Python codes used for training data generation and the full compilation of 
training data are available in the data repository cited in the Acknowledgments.

2.5. Network Construction and Training

2.5.1. Convolutional Neural Network

Convolutional neural networks (CNNs) are used to analyze, interpret, or classify image-based data. A convolu-
tional layer contains a sequence of filters/kernels, each representing an abstract feature of the input image. As 
the number of connected convolutional layers increases, the input spatial information gets selected and refined. 
The accumulated receptive fields of shallower (or earlier) layers make the region exposed to the neurons in the 
deeper (or later) layers larger. This enables CNN to capture smaller-scale features in the shallower layers and the 
more global information in the deeper layers (Gu et al., 2018). For the networks in this study, 3-D convolutional 
layers were utilized, allowing the network to learn the 3-D spatial correlations within and among feature maps.

2.5.2. Residual-In-Residual Dense Network

Stochastic gradient descent on the loss function (i.e., backpropagating the partial derivatives with respect to a 
selected subset of network parameters at every gradient step) is often implemented for the training of deep neural 
networks (Kingma & Ba, 2014). As the network grows deeper, gradient-based methods may suffer gradient-van-
ishing or gradient-exploding problems as the gradients accumulate during the training and backpropagating 
process. Specifically, gradient instabilities caused by factors such as repeated weights multiplication, saturating 
activation functions, or improper parameters initialization (Glorot & Bengio, 2010; Lu et al., 2020) are likely to 
be amplified during the backpropagating process, causing either early saturation or stagnation in the network 
learning process (Ioffe & Szegedy, 2015).

To solve the gradient-vanishing problem, DenseNet was adopted to connect all layers—with matching feature 
map sizes—directly with all their subsequent layers (G. Huang et al., 2017). The direct connections were estab-
lished by using the outputs of all preceding layers as the inputs of the current layer, so the current layer can 
obtain and concatenate all the preceding input feature maps and then generate its feature maps to all subsequent 
layers (G. Huang et  al.,  2017). The growth rate of a dense block refers to the number of new feature maps 
concatenated at each layer. In addition to alleviating the gradient-vanishing problem, the densely connected struc-
ture also strengthens feature propagation and reuse, further reducing the parameters of the networks (G. Huang 
et al., 2017). After receiving the concatenated feature maps as inputs, each dense block carried out the batch 
normalization (BN; Ioffe & Szegedy, 2015) and the rectified linear unit (ReLU) nonlinear activation. Finally, the 
main features of the activated prediction were captured by a convolution layer and then passed to all subsequent 
layers.

To further increase the depth of the networks without the gradient-vanishing or gradient-exploding problem, a 
residual learning framework (He et al., 2016) was implemented to connect the dense blocks in the networks (Zhang 
et al., 2018). Residual-in-residual dense blocks (RRDB) have been successfully applied in image super-resolu-
tion (X. Wang et al., 2018) and geologic features parameterization (Mo et al., 2019c). Based on these previous 
models, the RRDB built here contained three residual dense blocks that included five dense blocks connected in 
a residual learning framework. The growth rate of each dense block was set to 48 and the residual scaling factor 
β was set to 0.2.

2.5.3. Network Architecture

The 3-D encoder-decoder based CNN used an encoder to first extract and parameterize the high-level features 
of the input data. The compressed high-level features map, referred to as the latent space, had a dimension of 
5 × 5 × 10. The decoder then constructed the permeability maps based on the extraction of high-level features in 
the latent space. The predicted permeability maps had a final dimension of 20 × 20 × 40, the same as the dimen-
sion of the arrival time different input maps generated with the forward model using the synthetic permeability 
maps as described in Section 2.4.1.

An illustration of the network architecture is presented in Figure 4. The convolutional block consisted of a single 
3-D convolutional layer, the residual-in-residual dense block consisted of 15 dense blocks, and feature selection 
through compression and reconstruction was achieved through average pooling and up-sampling blocks. Each 
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pooling block halved the dimension of the input feature maps through a combination of batch normalization 
(BN), ReLU activation, and average pooling layers. Each up-sampling block doubled the dimension of the input 
feature maps through a combination of batch normalization, ReLU activation, and Conv-Transpose layers.

In total, the entire network contains forty-eight 3-D convolutional layers, two average pooling layers, and two 
Conv-Transpose layers with a total of 8,570,690 trainable parameters. Both the networks trained with and with-
out porosity maps had the same architecture with the only difference being the number of input channels. The 
network trained without porosity had one input channel and the network trained with porosity had two input 
channels.

2.5.4. Network Training

The network training was a supervised process. The inputs were 3-D image tensors containing the arrival time 
difference maps (y) and the permeability maps of the corresponding synthetic geologic core were the target data 

𝐴𝐴 (𝒙𝒙) . To evaluate how porosity information improves the permeability prediction, a second network was trained 
with the porosity maps of the synthetic geologic cores as additional inputs.

The addition of noise to the input data during network training is key for network application to noisy exper-
imental data while improving network generalization and reducing overfitting (DeVries & Taylor, 2017; Noh 
et  al.,  2017). Image-based PET data contain Gaussian measurement noise that varies between experiments 
depending on the background radiation in the scanner room, instrument error, and the number of coincidence 
detection events used in a given image reconstruction—as determined by time step size and quantity of posi-
tron-emitting radiotracer in the scanner (Zahasky et al., 2019). To replicate this noise in the training data, all of 
the simulated arrival time difference maps were corrupted with Gaussian white noise. To account for variation in 
dataset noise while ensuring that all of the datasets experienced some noise, the noise applied to the input arrival 
time difference maps was assigned with a distribution that had a mean of zero and a standard deviation that was 
scaled to 1/70 of the arrival time range for each training set. This magnitude of added noise was determined both 
from quantification of PET measurement error and hyperparameter tuning during network training.

The predicted permeability maps 𝐴𝐴 (�̂�𝒙) were compared with the target synthetic permeability maps (x) through 
loss functions. The loss function 𝐴𝐴 (𝑡𝑡) used in this study is given in Equation 6. The selected loss function was a 
combination of L1 loss 𝐴𝐴 (𝐿𝐿1) and KL-Divergence loss 𝐴𝐴 (𝐾𝐾𝐾𝐾) evaluated between the target log-permeability maps 
and the corresponding predicted log-permeability maps in the dataset.

Figure 4. Schematic illustration of the inversion-validation workflow using both synthetic (top loop) and experimental PET data (bottom loop). The purple blocks 
correspond to synthetic/predicted permeability maps, the red block is the PET data, the orange blocks are experimental and modeled arrival time difference maps. The 
CNN components include convolutional blocks (blue), up/down-sampling block (yellow), and residual-in-residual dense blocks (green).
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𝑡𝑡 = 𝐿𝐿1 + 𝛼𝛼𝐾𝐾𝐿𝐿 (6)

In Equation 6, the α term is the weight for the KL-Divergence loss. Equation 7 gives the L1 loss that measures the 
absolute distance between the target and predicted log-permeability maps.

𝐿𝐿1 = ‖𝒙𝒙 − �̂�𝒙‖1 (7)

The KL-Divergence loss, given in Equation 8, measures the differences in probability distributions between the 
target (P(x)) and predicted log-permeability maps 𝐴𝐴 (𝑄𝑄 (�̂�𝒙)) .

𝐾𝐾𝐾𝐾 = 𝐷𝐷 (𝑃𝑃 (𝒙𝒙)‖𝑄𝑄 (�̂�𝒙))𝐾𝐾𝐾𝐾 = 𝑃𝑃 (𝒙𝒙) ⋅ log

(
𝑃𝑃 (𝒙𝒙)

𝑄𝑄 (�̂�𝒙)

)

 (8)

To accentuate the distribution in both the targets and predictions, all the log-permeability maps were normalized by 
the softmax function separately along the x, y, and z dimensions before performing the KL-divergence calculation.

By minimizing the discrepancy in probability distributions along all three dimensions, the use of KL-divergence 
loss alleviates the problem of criterion-dependent overfitting (e.g., generating a blurred permeability map with 
a small, averaged discrepancy in permeability but a large difference in local permeability). The KL-divergence 
loss is critical for training a network that not only captures the core average permeability but also the local voxel/
grid cell permeability. Due to this emphasis on distribution differences, the KL-divergence loss has been widely 
implemented in restricting the spatial variation within 3-D images for auto-encoding tasks (Larsen et al., 2016; 
Wu et al., 2016).

The loss propagation was monitored by observing the gradient as a function of the training epoch and the mini-
mum of the loss curve for the predictions on synthetic permeability maps in the validation set. The adaptive 
moment estimation (Adam) algorithm was adopted to back-propagate the differentiable activation functions 
through stochastic gradient descent on a series of mini-batches. The purpose of adopting the Adam optimizer was 
to save the memory usage while efficiently propagating the sparse gradients caused by the high complexity of the 
imagery data (Kingma & Ba, 2014). A batch size of 32 was assigned to solve the poor generalization problem that 
originates from large batch size (Keskar et al., 2017) while maintaining high computational efficiency.

An initial learning rate of 0.01 was observed to be the highest learning rate capable of driving rapid training loss 
reduction while maintaining minimal divergence between the validation loss and the training loss (Bengio, 2012). 
Therefore, the initial learning rate for the training was set to 0.005 for preventing the early plateau of loss at 
suboptimal levels. During the training process, over-fitting was monitored as indicated by validation loss stagna-
tion at a relatively high value while the training loss steadily decreases. To address the over-fitting issue, a learn-
ing rate scheduler was adopted with a weight decay factor of 0.5 for every plateau or increase in validation loss 
over 15 epochs. In addition, a 3-D dropout layer (Hinton et al., 2012) was added after the ReLU activation layer 
in every dense block to simulate a sparser activation that further reduced the potential for overfitting.

Training accuracy was evaluated on the test set by individually comparing each synthetic permeability map with 
the network predicted permeability map or by comparing the experimental arrival time difference maps (y) and 
the numerically simulated arrival time difference maps 𝐴𝐴 (�̂�𝒚) based on the network permeability map prediction. 
The root-mean-squared error (RMSE) and coefficient of determination (R 2) statistical indicators were used to 
evaluate the accuracy of a given network prediction. The form of these equations applied to the permeability maps 
are described in Equations 9 and 10.

RMSE =

√
√
√
√ 1

𝑉𝑉

𝑉𝑉∑

𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − �̂�𝑥𝑖𝑖)
2 (9)

𝑅𝑅2 = 1 −

∑𝑉𝑉

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̂�𝑥𝑖𝑖)
2

∑𝑉𝑉

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̄�𝑥)2
 (10)

Here, V is the number of voxels/grid cells in a sample, xi is the target synthetic permeability value in a single voxels/
grid cell, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is the predicted permeability value in the corresponding voxels/grid cell, and 𝐴𝐴 𝐴𝐴𝐴 is the sample-average 
target synthetic log permeability. Equation 10 had the same form when applied to arrival time difference maps.
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The two synthetic datasets with and without porosity each had 20,000 arrival time difference map and synthetic 
permeability map pairs assigned to the training set, 5,500 pairs for the validation set, and 500 for the test set. 
Each training run of 300 epochs generally took 26–36 h to complete on an Nvidia GeForce GTX980 GPU at the 
University of Wisconsin-Madison Center for High Throughput Computing (CHTC), and the trained parameters 
for the network were stored in two separate path files after the training (a 10.8 MB path file for the encoder model 
and a 22.1 MB path file for the decoder model). The Python codes for the neural networks used in this study and 
the trained models are available in the repository referenced in the Acknowledgments.

2.5.5. PET Data Inversion-Validation Workflow

After the encoder-decoder based CNN was fully trained, a set of experimental 3-D arrival time difference maps 
obtained from the PET imaging methods discussed in Sections 2.1 and 2.2 were used to generate permeability 
map predictions. In the second network, both 3-D porosity maps and scaled X-ray CT scans were tested as addi-
tional inputs to the arrival time data. Using the algorithms discussed in Section 2.4.1, arrival time difference 
maps 𝐴𝐴 (�̂�𝒚) were then generated using the predicted 3-D permeability maps 𝐴𝐴 (�̂�𝒙) as forward numerical model input. 
The modeled arrival time difference maps were then directly compared with the experimental measured arrival 
time difference maps (y) to validate the accuracy of the network permeability map predictions. A summary of the 
overall workflow including permeability inversion, forward numerical flow and transport modeling, and cross 
validation is presented in Figure 4.

3. Results
3.1. Network Results With Synthetic Test Data and Homogeneous Porosity

The accuracy of the trained encoder-decoder based CNN was evaluated by comparing the RMSE accuracy (Equa-
tion 9) of the 500 3-D permeability predictions in the test set. The arrival time difference maps used to generate 
these predictions all included Gaussian noise. The grid cell-average RMSE of all of the log10-permeability maps 
in the test set was 0.057, or 1.1 mD. Figure 5 illustrates the grid cell-level network performance of 15 randomly 
chosen sample permeability map predictions from the test set compared against the corresponding grid cells in 
the synthetic target permeability maps that were used to generate the input arrival time difference maps.

Examples of two spatially resolved permeability inversion results are plotted in Figure 6. The top plot of Figure 6 
provides a 3-D example of 90th percentile permeability map prediction (with a R 2 score of 0.901) and the bottom 
plot of Figure 6 provides a 3-D example of a 10th percentile permeability map prediction (with a R 2 score of 
0.775). Each set includes the arrival time difference map, the predicted permeability map, and the corresponding 
synthetic permeability map. Based on this multilevel analysis, the trained encoder-decoder based CNN learned 
the key features of the arrival time difference map and the relationship with the corresponding heterogeneous 
permeability map.

3.2. Network Results With Experimental PET Data

Following the network evaluation with the synthetic test set data, permeability predictions were generated on the 
experimental arrival time difference datasets collected from four geologic cores using the PET imaging data illus-
trated in Figure 1 and described in Section 2.1. Figures 7 and 8 show the 3-D experimental arrival time difference 
maps calculated from the PET data, the predicted permeability maps from the network, and the simulated arrival 
time difference maps from the MODFLOW-MT3DMS model simulated on the predicted permeability maps. 
Grid cell-level comparison of the arrival time data is shown in the top row of cross-plots in Figure 9. In Figure 9, 
the experimental grid cell-level arrival time difference is given on the x-axis, and modeled grid cell-level arrival 
time difference—based on the network permeability map prediction—is given on the y-axis. For the experimental 
data, the arrival time difference map predictions had an R 2 accuracy ranging from 0.756 (Ketton limestone) to 
0.831 (laminated Berea sandstone), verifying the capability and robustness of a single trained network to predict 
the 3-D permeability map of geologic samples.
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Figure 5. 15 randomly chose samples of permeability map prediction using arrival time difference maps from the test set that included Gaussian noise. For each 
subplot, the x-axis represents the grid cell-level synthetic permeability associated with the test set arrival time, and the y-axis represents the corresponding grid cell-
level predicted permeability. To illustrate the density of the correlations, the cross-plots are colored by the number of points in a given bin or local region of the cross-
plot. The plots with the gold and red outlines correspond to the top and bottom rows of plots in Figure 6, respectively.

Figure 6. Illustration of two numerically calculated arrival time difference maps using MODFLOW-MT3DMS (left column) based on the corresponding synthetically 
generated permeability maps (right column). The arrival time difference maps—plotted here without the Gaussian noise—were the input data used to generate the 
corresponding predicted permeability maps (middle column) by the network trained with homogeneous porosity. In terms of the R 2 accuracy, the top row corresponds to 
a 90th percentile quality prediction. This dataset is also shown in the scatter plot in Figure 5 marked with the gold box. The bottom row corresponds to a 10th percentile 
quality prediction and is given by the scatter plot in Figure 5 marked with the red box. The dimension of the grid cells for all models are 0.233 × 0.233 × 0.25 cm 3.
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3.3. Results of the Model Trained With Heterogeneous Porosity

A second network was trained assuming a spatial correlation between porosity and permeability maps. This 
was done to test if additional structural information provided by the porosity maps improved the permeability 

Figure 7. Cross-comparison of the network trained with homogeneous porosity using experimentally measured arrival time 
difference maps measured with PET on a laminated Berea sandstone (top three subplots) and an Edwards Brown limestone 
(bottom three subplots). The upper left subplots show the arrival time difference map calculated from the PET imaging data, 
the lower plot shows the predicted permeability map by the network, and the upper right shows the modeled arrival time 
difference map based on the predicted permeability map. Note that the experimental and modeled arrival times are plotted on 
the same colorscale.
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prediction. This network was trained with an additional input channel of the porosity map as described in 
Section 2.4.2. Similar to the first network trained with homogeneous porosity, the training and validation loss 
curves of the second network also display a clear downward trend. The training performance of this second 

Figure 8. Cross-comparison of the network trained with homogeneous porosity using experimentally measured arrival time 
difference data measured with PET collected from a Ketton limestone (top three subplots) and a Indiana limestone (bottom 
three subplots). The upper left subplots show the arrival time difference map calculated from the PET imaging data, the 
lower plot shows the predicted permeability by the network, and the upper right shows the modeled arrival time difference 
map based on the predicted permeability map. Note that the experimental and modeled arrival times are plotted on the same 
colorscale.
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network with heterogeneous porosity was slightly better than the first network with homogeneous porosity as 
illustrated by both the lower training and validation loss, and lower overall testing root mean square error in 
Figure 10. For this second network, the average RMSE accuracy of all the log10-permeability maps in the test set 
was 0.047, a slight improvement relative to the network with no porosity data that had an RMSE of 0.057. The 
improved performance on the synthetic data was attributed to the strong spatial correlations between the synthetic 
permeability and porosity maps as illustrated in Figure S3 in the Supporting Information S1.

Despite the slightly better performance on synthetic data, a contradictory phenomenon was observed regarding 
the experimental data. For the four geologic cores and PET datasets presented in Figures 7 and 8, both tradi-
tional X-ray CT-measured porosity maps and scaled dry X-ray CT scans were tested as the additional inputs for 
permeability map prediction (see the full description of this data in Section 2.3). Figure 9 illustrates the results 
of the modeled arrival time analysis compared against the experimental arrival time measurements using the 
same experimental cross-comparison process as the previous network. The network trained with heterogeneous 
porosity maps generally under-performed the network trained with only the arrival time difference data. This is 
illustrated by the consistent reduction in the R 2 accuracy in the middle and bottom row of plots in Figure 9. The 
only instances of higher R 2 accuracy relative to the network using only arrival time data were the Ketton core, 
with both scaled X-ray CT data and X-ray CT porosity, and the Berea core with scaled X-ray CT data. In all cases 
the R 2 accuracy improved by less than 3% with the addition of X-ray CT-derived input data.

4. Discussion
The results illustrate that the network accurately determines the local patterns and magnitudes of permeability 
variations from both noisy synthetic and experimentally measured arrival time difference maps. High permea-
bility areas generally have more rapid arrival times and thus more positive arrival time differences whereas low 
permeability areas generally have slower arrival times and thus more negative arrival time differences. However, 

Figure 9. Cross-plot of experimental arrival time difference data (x-axis) and modeled arrival time difference from network permeability map prediction for the four 
geologic cores (from left to right): Berea sandstone, Edwards Brown limestone, Indiana limestone, and Ketton limestone. The top row of plots show the results using the 
arrival time difference map as the only network input channel; the middle row of plots show the results using the scaled dry X-ray CT scan as the second input channel; 
the bottom row of plots show the results using the X-ray CT-measured porosity map as the second input channel. To illustrate the density of the correlations, the cross-
plot is colored by the number of points in a given bin or local region of the cross-plot. These results indicate that the addition of X-ray CT-derived data provides very 
little or no improvement in permeability map prediction.
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in many cases, the structure of the permeability variation can distort obvious relationships with arrival times as 
indicated by Figures 7 and 8.

Statistical analysis of the inversion results summarized in the left plot of Figure 10 indicates that the RMSE of the 
network-predicted permeability relative to the original synthetic permeability field was consistently low across 
the entire range of 500 test set permeability maps. Analysis of the test set RMSE as a function of mean permea-
bility, permeability field standard deviation, and mean correlation length indicates that there was no correlation 
between RMSE and permeability field characteristics. Plots illustrating RMSE as a function of permeability field 
characteristics are provided in Figures S4, S5, and S6 in the Supporting Information S1. The lack of correlation 
between test set RMSE and 3-D permeability field correlation length statistics indicates that there was minimal 
feature loss resulting from feature smoothing during the encoding and decoding process. This verifies that using 
an encoding-decoding network reduces network training computational and memory requirements while main-
taining the robustness of permeability inversion.

A key challenge of determining the 3-D permeability distribution from 3-D time-lapse solute transport measure-
ments is isolating the transport characteristics that are permeability-dependent. Convolutional neural networks 
excel at finding spatial correlations between distinct high-frequency features such as contours or edges of distri-
butions. Therefore, it is crucial to minimize the high-frequency experimental noise—distinct features that are 
unrelated to the permeability distribution—in the input data. The quantile-based arrival time analysis emphasizes 
the advective transport that is directly influenced by permeability and minimizes the effects of hydrodynamic 
and numerical dispersion, experimental imaging noise, variation in initial solute concentration, and solute tailing 
behavior. The normalization of the arrival time map is thus able to reduce the influence of experimental condi-
tions such as flow rate and variation in sample dimensions. This pre-processing and dimension reduction using 
classic transport analysis methods converts the raw 4-D datasets down to 3-D maps of arrival time information. 
This constrains the domain of the inversion problem while minimizing the complexity, leading to a more unique 
and computationally efficient permeability prediction.

Porosity-permeability relationships are likely to exist in structured sedimentary rocks such as sandstones, while 
these relationships often breakdown in carbonates. The accuracy of the permeability predictions in the second 
network that included correlations between porosity and permeability was marginally improved in the synthetic 
data as illustrated in Figure 10. However, there were minimal improvements or even worse predictions in the 

Figure 10. Training and testing performance of both networks trained with and without heterogeneous porosity maps, including training loss (top right plot), validation 
loss (bottom right plot), and the distribution of the RMSE accuracy of the permeability map predictions based on the test set data (left plot). The loss curves are the 
combination of five independent training/validation trials. The upper and lower bounds of the loss curve area at every epoch illustrate the maximum and the minimum 
loss values from the five trials, respectively. The bold line through the middle of the loss curve area illustrates the mean of the five training/validation trials. For the 
test set, the average RMSE of all of the predicted log10-permeability maps using the network trained without heterogeneous porosity maps was 0.057, and the average 
RMSE of all of the predicted log10-permeability maps using the network trained with heterogeneous porosity maps was 0.047. These plots illustrate the improved 
training and predictive performance of the network when a consistent relationship exists between porosity and permeability for a given sample—as is the case for the 
synthetic training datasets with heterogeneous porosity.
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experimental data inversion as illustrated in Figure 9. This highlights the importance of validating deep learning 
methods on experimental or field data as deep learning model efficacy can be hampered by the intrinsic oversim-
plification of synthetic training datasets.

The results summarizing the experimental data inversion in Figure 9 generally found higher R 2 scores for the 
permeability map predictions using scaled X-ray CT scans as opposed to porosity map data. The network with 
scaled X-ray CT scans input data slightly outperformed the results without X-ray CT data for permeability predic-
tions on geologic cores with distinct structural features—such as the clear lamination in the Berea sandstone. 
However, scaled X-ray CT scans suffer from the same uncertainty in the strength of a single porosity-perme-
ability relationship for a given sample volume. Extensive hyperparameter exploration was performed on the 
porosity-permeability relationships by adding different levels of noise to the porosity data, thus weakening the 
underlying porosity-permeability relationships in the training data. Nevertheless, these results indicate that the 
porosity-permeability framework adopted in this study is likely not universal enough for spanning all geologic 
materials with a single trained network. Thus, using only PET-derived arrival time difference maps provides the 
best general performance for 3-D permeability inversion.

5. Implications
This study demonstrates a new method for rapid 3-D permeability inversion of geologic core samples. This 
inversion was performed by applying a deep encoder-decoder based convolutional neural network—utilizing 
multilevel residual learning strategy and the dense connection structure—to massive image-based datasets. The 
network accurately predicted the local patterns and magnitude of the 3-D permeability maps using local arrival 
time difference maps. In addition to synthetic training data, the network was validated on experimentally meas-
ured data from PET scans and core-average permeability measurements on four different sandstone and carbonate 
core samples.

The trained network can generate a permeability map prediction—in less than ten seconds—of any geologic core 
sample with a permeability field defined by the training data parameter space. This rapid reduction in computa-
tional time and memory requirements arises from the data-driven nature of this approach (Kim & Nakata, 2018; 
Masci et al., 2011), where the trained encoder-decoder based CNN is capable of learning a generalizable mapping 
function between the input arrival time difference maps and output permeability maps. As long as the training 
data represent the data distribution for the inversion problem, the mapping function serves as a pseudo-inverse 
operator (Adler & Ozan, 2017). This approach avoids the computational complexity of common numerical opti-
mization and nonlinear approaches (Carrera et al., 2005; Yeh, 1986) that would require iterative forward simula-
tion to estimate the permeability map for a single core sample.

The orders of magnitude reduction in multiscale permeability inversion time provides an opportunity for a para-
digm shift in core scale analysis and characterization. This workflow generates an accurate experimentally-de-
rived 3-D permeability map of a geologic sample rather than a single sample-average permeability measurement. 
This type of rapid 3-D permeability characterization is a key starting point for disentangling the impacts of 
heterogeneity on multiphase flow observations and a range of reactive transport and colloidal transport processes.
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