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A B S T R A C T

Numerical simulation of multiphase flow in porous media is essential for many geoscience applications.
Machine learning models trained with numerical simulation data can provide a faster alternative to traditional
simulators. Here we present U-FNO, a novel neural network architecture for solving multiphase flow problems
with superior accuracy, speed, and data efficiency. U-FNO is designed based on the newly proposed Fourier
neural operator (FNO), which has shown excellent performance in single-phase flows. We extend the FNO-
based architecture to a highly complex CO2-water multiphase problem with wide ranges of permeability and
porosity heterogeneity, anisotropy, reservoir conditions, injection configurations, flow rates, and multiphase
flow properties. The U-FNO architecture is more accurate in gas saturation and pressure buildup predictions
than the original FNO and a state-of-the-art convolutional neural network (CNN) benchmark. Meanwhile, it
has superior data utilization efficiency, requiring only a third of the training data to achieve the equivalent
accuracy as CNN. U-FNO provides superior performance in highly heterogeneous geological formations and
critically important applications such as gas saturation and pressure buildup ‘‘fronts’’ determination. The
trained model can serve as a general-purpose alternative to routine numerical simulations of 2D-radial CO2
injection problems with significant speed-ups than traditional simulators.
1. Introduction

Multiphase flow in porous media is important for many geoscience
applications, including contaminant transport (Bear and Cheng, 2010),
carbon capture and storage (CCS) (Pachauri et al., 2014), hydrogen
storage (Hashemi et al., 2021), oil and gas extraction (Aziz, 1979),
and nuclear waste storage (Amaziane et al., 2012). Due to the multi-
physics, non-linear, and multi-scale nature of these processes, numeri-
cal simulation is the primary approach used to solve mass and energy
conservation equations for these applications (Orr et al., 2007). These
numerical simulations are often very time consuming and computation-
ally intensive since they require fine spatial and temporal discretization
to accurately capture the flow processes (Doughty, 2010; Wen and
Benson, 2019). Meanwhile, the inherent uncertainty in property dis-
tributions of heterogeneous porous media necessitates probabilistic
assessments and inverse modeling to aid engineering decisions (Ki-
tanidis, 2015; Strandli et al., 2014). Both of these procedures require
large numbers of forward numerical simulation runs and are often
prohibitively expensive (NAS, 2018).

A number of machine learning-based methods have been proposed
over the past few years to provide faster alternatives to numerical
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simulation (Tahmasebi et al., 2020). Most existing machine learning-
based methods can be categorized into the following two categories:
(1) data-driven finite-dimensional operators that learn Euclidean space
mappings from numerical simulation data (Zhu and Zabaras, 2018;
Mo et al., 2019; Zhong et al., 2019; Tang et al., 2020; Wen et al.,
2021b,a), and (2) physics-informed/physics-constrained/neural finite
difference learning methods that parameterize the solution functions
with a neural network (Raissi et al., 2019; Zhu et al., 2019; Haghighat
and Juanes, 2021). The first type, finite-dimensional operators, is often
implemented with convolutional neural networks (CNN). These CNN-
based models have been successful in providing fast and accurate
predictions for high-dimensional and complex multiphase flow prob-
lems (Jiang et al., 2021; Wen et al., 2021a,b; Tang et al., 2021;
Wu and Qiao, 2020). However, CNN-based methods are prone to
overfitting, therefore requiring large numerical simulation data sets
that can be unmanageable as the problem dimension grows. Also, the
results produced by these models are tied to the specific spatial and
temporal meshes used in the numerical simulation data set. The second
approach, often implemented with artificial neural networks (ANN)
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(e.g., CNNs Wang et al., 2021; Kamrava et al., 2021), uses neural
finite difference methods that require separate trainings for any new
instance of the parameters or coefficients (Raissi et al., 2019) (e.g.,
ew permeability map or injection rate). Therefore, these methods
equire as much computational effort as traditional numerical solvers, if
ot more. Furthermore, for the Buckley–Leverett two-phase immiscible
low problem that is common for subsurface flow problems, physics-
nformed approaches often require observed data or additional diffusive
erm/physical constraint to improve convergence (Fuks and Tchelepi,
020; Almajid and Abu-Alsaud, 2021; Fraces and Tchelepi, 2021).

Recently, a novel approach, the neural operator, has been proposed
hat directly learns the infinite-dimensional-mapping from any func-
ional parametric dependence to the solution (Lu et al., 2019; Li et al.,
020b,c; Bhattacharya et al., 2020). Unlike neural finite difference
ethods, neural operators are data-driven therefore require training

nly once. Meanwhile, neural operators are mesh-independent, so they
an be trained and evaluated on different grids. Due to the cost of
valuating global neural integral operators, previously proposed neural
perators have not yet been able to achieve the desirable degree
f computational efficiency (Li et al., 2020a). However, one type of
eural operator, the Fourier neural operator (FNO), alleviates this issue
hrough the implementation of a Fast Fourier Transform (Li et al.,
020a). The FNO has shown excellent performance on single-phase
low problems with great generalization ability, and is significantly
ore data efficient than CNN-based methods (Li et al., 2020a).

Here we extend the FNO-based architecture to multiphase flow
roblems. We find that while FNO’s testing accuracy is generally higher
han CNN-based models, the training accuracy is sometimes lower
ue to the regularization effect of the FNO architecture. To improve
pon this, we present an enhanced Fourier neural operator, named
-FNO, that combines the advantages of FNO-based and CNN-based
odels to provide results that are both highly accurate and data

fficient. Through the implementation of the newly proposed U-Fourier
ayer, we show that the U-FNO model architecture produces superior
erformance over both the original FNO (Li et al., 2020a) and a state-
f-the-art CNN benchmark (Wen et al., 2021a). We apply the U-FNO
rchitecture to the highly complex CO2-and-water multiphase flow
roblem in the context of CO2 geological storage to predict dynamic
ressure buildup and gas saturation. The trained U-FNO models provide
n alternative to numerical simulation for 2D-radial CO2 injection
roblems with wide ranges of permeability and porosity heterogeneity,
nisotropy, reservoir conditions, injection configurations, flow rates,
nd multiphase flow properties.

. Problem setting

.1. Governing equation

We consider a multi-phase flow problem with CO2 and water in the
ontext of geological storage of CO2. The CO2 and water are immiscible
ut have mutual solubility. The general forms of mass accumulations
or component 𝜂 = CO2 or 𝑤𝑎𝑡𝑒𝑟 are written as (Pruess et al., 1999):

𝜕
(

𝜑
∑

𝑝 𝑆𝑝𝜌𝑝𝑋
CO2
𝑝

)

𝜕𝑡
= −∇ ⋅

[

𝐅CO2
|𝑎𝑑𝑣 + 𝐅CO2

|𝑑𝑖𝑓

]

+ 𝑞CO2 (1)

𝜕
(

𝜑
∑

𝑝 𝑆𝑝𝜌𝑝𝑋𝑤𝑎𝑡𝑒𝑟
𝑝

)

𝜕𝑡
= −∇ ⋅

[

𝐅𝑤𝑎𝑡𝑒𝑟
|𝑎𝑑𝑣 + 𝐅𝑤𝑎𝑡𝑒𝑟

|𝑑𝑖𝑓

]

. (2)

ere 𝑝 denotes the phase of 𝑤 (wetting) or 𝑛 (non-wetting). In the
iliciclastic rocks present at most geological storage sites, water is the
etting phase (Pini et al., 2012). However, due to the mutual solubility
f water and CO2, there is a small amount of CO2 in the water phase and
small amount of water in the CO2 phase. Here 𝜑 is the porosity, 𝑆𝑝

is the saturation of phase 𝑝, and 𝑋𝜂
𝑝 is the mass fraction of component

𝜂 in phase 𝑝.
2

For both components, the advective mass flux 𝐅𝜂
|𝑎𝑑𝑣 is obtained by

summing over phases 𝑝,

𝐅𝜂
|𝑎𝑑𝑣 =

∑

𝑝
𝑋𝜂𝐅𝑝 =

∑

𝑝
𝑋𝜂(−𝑘

𝑘𝑟,𝑝𝜌𝑝
𝜇𝑝

(∇𝑃𝑝 − 𝜌𝑝𝐠)
)

(3)

here each individual phase flux 𝐅𝑝 is governed by the multiphase flow
xtension of Darcy’s law. 𝑘 denotes the absolute permeability, 𝑘𝑟,𝑝 is the
elative permeability of phase 𝑝 that non-linearly depends on 𝑆𝑝, 𝜇𝑝 is
he viscosity of phase 𝑝 that depends on 𝑃𝑝, and 𝐠 is the gravitational
cceleration.

Due to the effect of capillarity, the fluid pressure 𝑃𝑝 of each phase
s

𝑃𝑛 = 𝑃𝑤 + 𝑃𝑐 (4)

𝑤 = 𝑃𝑤 (5)

here the capillary pressure 𝑃𝑐 is a non-linear function of 𝑆𝑝. Addition-
lly, porosity 𝜑, density 𝜌𝑝, and the solubility of CO2 in Eqs. (1) and (2)
re also non-linear functions that depend on 𝑃𝑝. A table of notation is
ncluded in Appendix A.

To simplify the problem setting, our simulation does not explicitly
nclude molecular diffusion and hydrodynamic dispersion. However
ome unavoidable numerical diffusion and numerical dispersion re-
ulting from approximating spatial gradients using the two-point up-
tream algorithm (Schlumberger, 2014) is intrinsic to the numerical
imulations used for the neural network training.

.2. Numerical simulation setting

We use the numerical simulator ECLIPSE (e300) to develop the
ultiphase flow data set for CO2 geological storage. ECLIPSE is a full
hysics simulator that uses the finite difference method with upstream
eighting for spatial discretization and the adaptive implicit method

or temporal discretization (Schlumberger, 2014). We inject super-
ritical CO2 at a constant rate into a radially symmetrical system 𝑥(𝑟, 𝑧)
hrough a vertical injection well with a radius of 0.1 m. The well can
e perforated over the entire thickness of the reservoir or limited to
selected depth interval. We simulate CO2 injection for 30 years at
constant rate ranging from 0.2 to 2 Mt/year. The thickness of the

eservoir ranges from 12.5 to 200 m with no-flow boundaries on the
op and bottom. We use a vertical cell dimension of 2.08 m to capture
he vertical heterogeneity of the reservoir. The radius of the reservoir
s 100,000 m. The outer boundary is closed, but is sufficiently distant
rom the injection well that it behaves like an infinite acting reservoir.

Two hundred gradually coarsened grid cells are used in the radial
irection. Grid sensitivity studies show that this grid is sufficiently
efined to capture the CO2 plume migration and pressure buildup,
hile remaining computationally tractable (Wen and Benson, 2019).
imulated values of the gas saturation (𝑆𝐺) and pressure buildup (𝑑𝑃 )
ields at 24 gradually coarsening time snapshots are used for training
he neural nets. Refer to Appendix B for detailed spatial and temporal
iscretizations.

.3. Variable sampling scheme

We sample two types of variables for each numerical simulation
ase: field variables and scalar variables. As shown in Fig. 1, field
ariables include the horizontal permeability map (𝑘𝑥), vertical per-
eability map (𝑘𝑦), porosity map (𝜙), and injection perforation map
𝑝𝑒𝑟𝑓 ). The reservoir thickness 𝑏 is randomly sampled in each simula-
ion case and controls the reservoir dimension in each of the following
ield variables. The variable 𝑏 is applied as an active cell mask to label
he rows within the specified thickness.



Advances in Water Resources 163 (2022) 104180G. Wen et al.
Fig. 1. Example of mapping between A. input to B. output gas saturation and C. pressure buildup. A. Field and scalar channels for each case. Note that the scalar variables are
broadcast into a channel at the same dimension as the field channels. B. Gas saturation evolution for 6 out of 24 time snapshots. C. Pressure buildup evolution for 6 out of 24
time snapshots.
Table 1
Summary of input variable’s type, sampling range, distribution, and unit. All input
sampling are independent with the exception of porosity and vertical permeability map.
The dimension of field variables are (96,200).

Variable type Sampling parameter Notation Distribution Unit

Field Horizontal permeability field 𝑘𝑥 Heterogeneousa –
# of anisotropic materials 𝑛𝑎𝑛𝑖𝑠𝑜 𝑋 ∼  {1, 6} –
Material anisotropy ratio 𝑘𝑥∕𝑘𝑦 𝑋 ∼  [1, 150] –
Porosity (perturbation) 𝜙 𝜖 ∼  (0, 0.005) –
Reservoir thickness 𝑏 𝑋 ∼  [12.5,200] m
Perforation thickness 𝑏𝑝𝑒𝑟𝑓 𝑋 ∼  [12, 𝑏] m
Perforation location – Randomly placed –

Scalar Injection rate 𝑄 𝑋 ∼  [0.2, 2] MT/y
Initial Pressure 𝑃𝑖𝑛𝑖𝑡 𝑋 ∼  [100, 300] bar
Iso-thermal reservoir temperature 𝑇 𝑋 ∼  [35, 170] ◦C
Irreducible water saturation 𝑆𝑤𝑖 𝑋 ∼  [0.1, 0.3] –
Van Genuchten scaling factor 𝜆 𝑋 ∼  [0.3, 0.7] –

aRefer to Appendix C for a detailed statistical parameter summary for generating
heterogeneous 𝑘𝑥 map.

• 𝑘𝑥: The Stanford Geostatistical Modeling Software (SGeMS)
(Remy et al., 2009) is used to generate the heterogeneous 𝑘𝑥
maps. SGeMS produces permeability map according to required
input parameters such as correlation lengths in the vertical and
radial directions, medium appearances (Appendix C), as well as
permeability mean and standard deviation. A wide variety of per-
meability maps representing different depositional environments
are included in the data set and the permeability value ranges
widely from 10 Darcy to 0.001 mD. Appendix C summarizes
statistical parameters that characterize the permeability maps.
Note that in a radially symmetrical system, these maps form
rings of heterogeneity around the injection well. We do not claim
these permeability maps are realistic models of any reservoir, but
use them to demonstrate the proposed model’s performance in
heterogeneous systems.

• 𝑘𝑦: The vertical permeability map is calculated by multiplying
the 𝑘𝑥 map by the anisotropy map. To generate the anisotropy
map, values of 𝑘𝑥 are binned into 𝑛𝑎𝑛𝑖𝑠𝑜 materials where each bin
is assigned a randomly sampled anisotropy ratio. The anisotropy
ratios are then assigned to the anisotropy map according to the
location of the corresponding 𝑘𝑥. Note that the anisotropy ratio is
uncorrelated with the magnitude of the radial permeability. This
3

procedure roughly mimics a facies-based approach for assigning
anisotropy values.

• 𝜙: Previous studies show that porosity and permeability are
loosely correlated with each other (Pape et al., 2000). Therefore,
to calculate porosity we first use the fitting relationship presented
in Pape et al. (2000) and then perturb these values with a random
Gaussian noise 𝜖 with mean value of zero and standard deviation
of 0.001.

• 𝑝𝑒𝑟𝑓 : The injection interval thickness 𝑏𝑝𝑒𝑟𝑓 is randomly sampled
within the range from 12.5 m to the specific reservoir thickness
𝑏 of that case. We placed the perforation interval on the injection
well, by randomly sampling the depth of the perforation top from
0 m to (𝑏 − 𝑏𝑝𝑒𝑟𝑓 ) m.

Visualizations of the above field variables are shown in Appendix C.
Table 1 summarizes the parameter sampling ranges and distributions
that are used to generate these field variables. The sampling parameters
are independent of each other with the exception of porosity and
permeability.

Scalar variables include the initial reservoir pressure at the top
of the reservoir (𝑃𝑖𝑛𝑖𝑡), reservoir temperature (𝑇 ), injection rate (𝑄),
capillary pressure scaling factor (𝜆) (Li et al., 2013), and irreducible
water saturation (𝑆𝑤𝑖). The parameter sampling range and distributions
are summarized in Table 1. While the scalar variables 𝑃𝑖𝑛𝑖𝑡 and 𝑇 and
determined independently, cases that yield unrealistic combinations of
these variables are excluded. These field and scalar input variables cre-
ate a very high-dimensional input space, which often requires massive
training data to avoid overfitting when using traditional CNN-based
models.

3. Methods

The goal of a neural operator is to learn an infinite-dimensional-
space mapping from a finite collection of input–output observations.
To formulate the problem, we define the domain 𝐷 ⊂ R𝑑 be a bounded
and open set;  be the input function space;  be the output function
space.  and  are separable Banach spaces of functions defined on 𝐷
that take values in R𝑑𝑎 and R𝑑𝑧 respectively. † ∶  →  is a non-
linear map that satisfies the governing PDEs. Suppose we have 𝑎𝑗 that
are drawn from probability measure 𝜇 in , then 𝑧𝑗 = †(𝑎𝑗 ). We aim to
build an operator 𝜃 that learns an approximation of † by minimizing
the following problem using a cost function 𝐶.

minE [𝐶( (𝑎),†(𝑎))] (6)

𝜃 𝑎∼𝜇 𝜃
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Fig. 2. A. U-FNO model architecture. 𝑎(𝑥) is the input, 𝑃 and 𝑄 are fully connected neural networks, and 𝑧(𝑥) is the output. B. Inside the Fourier layer,  denotes the Fourier
transform, 𝑅 is the parameterization in Fourier space, −1 is the inverse Fourier transform, 𝑊 is a linear bias term, and 𝜎 is the activation function. C. Inside the U-FNO layer,
𝑈 denotes a two step U-Net, the other notations have identical meaning as in the Fourier layer.
Since 𝑎𝑗 ∈  and 𝑧𝑗 ∈  are both functions, we use 𝑛-point discretiza-
tion 𝐷𝑗 = {𝑥1,… , 𝑥𝑛} ⊂ 𝐷 to numerically represent 𝑎(𝑥)𝑗 |𝐷𝑗

∈ R𝑛×𝑑𝑎

and 𝑧(𝑥)𝑗 |𝐷𝑗
∈ R𝑛×𝑑𝑧 . In this paper, 𝑎(𝑥)𝑗 represents the field and

scalar variables described in Section 2.3; 𝑧(𝑥)𝑗 represents the outputs
of temporally varying gas saturation and pressure buildup fields. We
demonstrate in this section that the proposed U-FNO architecture learns
the infinite-dimensional-space mapping 𝜃 from a finite collections of
𝑎(𝑥)𝑗 and 𝑧(𝑥)𝑗 pairs utilizing integral kernel operators in the Fourier
space. Fig. 2 provides a schematic of the U-FNO architecture. A table
of notation is included in Appendix A.

3.1. Integral kernel operator in the Fourier space

We define the integral kernel operator (illustrated as the yellow
boxes in Fig. 2b and c) by
(

(𝑣𝑙)
)

(𝑥) = ∫𝐷
𝜅(𝑥, 𝑦)𝑣𝑙(𝑦)d𝑣𝑙(𝑦),∀𝑥 ∈ 𝐷. (7)

To efficiently parameterize kernel 𝜅, the FNO method considers the
representation 𝑣𝑙 (and also 𝑣𝑚) in the Fourier space and utilizes Fast
Fourier Transform (FFT) (Li et al., 2020a). By letting 𝜅(𝑥, 𝑦) = 𝜅(𝑥 − 𝑦)
in Eq. (7) and applying the convolution theorem, we can obtain
(

(𝑣𝑙)
)

(𝑥) = −1( (𝜅) ⋅  (𝑣𝑙)
)

(𝑥),∀𝑥 ∈ 𝐷 (8)

where  denotes a Fourier transform of a function 𝑓 ∶ 𝐷 → R𝑐 and
−1 is its inverse. Now, we can parameterize 𝜅 directly by its Fourier
coefficients:
(

(𝑣𝑙)
)

(𝑥) = −1(𝑅 ⋅  (𝑣𝑙)
)

(𝑥),∀𝑥 ∈ 𝐷. (9)

where 𝑅 is the Fourier transform of a periodic function 𝜅. Since we
assume that 𝜅 is periodic, we can apply a Fourier series expansion and
work in the discrete modes of Fourier transform.

We first truncate the Fourier series at a maximum number of
modes 𝑘𝑚𝑎𝑥, and then parameterize 𝑅 directly as a complex valued
(𝑘𝑚𝑎𝑥 × 𝑐 × 𝑐)-tensor with the truncated Fourier coefficients. As a result,
multiplication by the learnable weight tensor 𝑅 is

(

𝑅 ⋅  (𝑣𝑙)
)

𝑘,𝑖 =
𝑐
∑

𝑗=1
𝑅𝑘,𝑖,𝑗 ( (𝑣𝑙))𝑘,𝑗 , ∀𝑘 = 1,… , 𝑘𝑚𝑎𝑥, 𝑖 = 1,… , 𝑐. (10)

By replacing the  by the FFT and implementing 𝑅 using a direct linear
parameterization, we have obtained the Fourier operator as illustrated
in Fig. 2B and C with nearly linear complexity.
4

3.2. U-FNO architecture

The U-FNO architecture contains the following three steps:

1. Lift input observation 𝑎(𝑥) to a higher dimensional space 𝑣𝑙0 (𝑥) =
𝑃 (𝑎(𝑥)) through a fully connected neural network transformation
𝑃 .

2. Apply iterative Fourier layers followed by iterative U-Fourier
layers: 𝑣𝑙0 ↦ ... ↦ 𝑣𝑙𝐿 ↦ 𝑣𝑚0

↦ ... ↦ 𝑣𝑚𝑀
where 𝑣𝑙𝑗 for

𝑗 = 0, 1,… , 𝐿 and 𝑣𝑚𝑘
for 𝑘 = 0, 1,… ,𝑀 are sequences of

functions taking values in R𝑐 for channel dimension 𝑐.
3. Project 𝑣𝑚𝑀

back to the original space 𝑧(𝑥) = 𝑄(𝑣𝑚𝑀
(𝑥)) using a

fully connected neural network transformation 𝑄.

Within each newly proposed U-Fourier layer (Fig. 2c), we have

𝑣𝑚𝑘+1
(𝑥) ∶= 𝜎

(

(

𝑣𝑚𝑘

)

(𝑥) +
(

 𝑣𝑚𝑘

)

(𝑥) +𝑊 (𝑣𝑚𝑘
(𝑥))

)

,∀𝑥 ∈ 𝐷 (11)

where  is the kernel integral transformation defined above,  is a U-
Net CNN operator, and 𝑊 is a linear operator, which are all learnable.
𝜎 is an activation function that introduces strong non-linearity to each
U-Fourier layer. Refer to Li et al. (2020a) for the formulation of the
original Fourier layer.

3.3. Characteristics of the U-Fourier layer

In contrast to the original Fourier layer in FNO (Li et al., 2020a),
the U-FNO architecture proposed here appends a U-Net path in each
U-Fourier layer. The U-Net processes local convolution to enrich the
representation power of the U-FNO in higher frequencies information.
The number of Fourier and U-Fourier layers, 𝐿 and 𝑀 , are hyperparam-
eters that can be optimized for the specific problem. For the multi-phase
flow problem considered here, we found that the architecture with half
Fourier layers and half U-Fourier layers achieves the best performance,
compared to architectures with all Fourier layers or all U-Fourier layers.

Note that the Fourier neural operator is an infinite-dimensional-
operator, which generates mesh-free/resolution invariant predictions.
However, when we append the U-Net block, we introduced the CNN-
based path that does not inherently provide the flexibility of training
and testing at different discretizations. We made this choice because
the CO2-water multiphase flow problem is very sensitive to numerical
dispersion and numerical dissolution, which are both tied to a specific
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Fig. 3. Training and validation relative loss evolution vs. epoch for U-FNO, FNO, conv-FNO and CNN benchmark for A. gas saturation and B. pressure buildup.
grid resolution. When training and testing at different grid dimensions,
the numerical noise is often transformed in a nonphysical way. As a
result, for this problem, we prioritize achieving higher training and
testing accuracy, which the U-FNO provides. Nevertheless, under the
circumstance where one wants to test the U-FNO model at unseen grid
resolutions, we developed additional down-sampling and up-sampling
techniques that can be applied to the U-Net component to re-introduce
the resolution invariant feature. An example of this technique and its
performance are discussed in Section 5.3.

Finally, the U-Fourier layer’s performance improvement is not lim-
ited to the spatial–temporal 3D multiphase flow problem considered in
this paper. We found that the U-FNO’s 2D variation also outperforms
the original FNO-2D in a steady-state Darcy’s flow problem. Refer to
Appendix D for details.

3.4. Data configuration

This section describes the configuration of the inputs and outputs
for the proposed U-FNO architecture. For the data input, each of the
field variables in Fig. 1A is represented by a channel. Since we use
a gradually coarsening radial grid for the numerical simulations, a
logarithm conversion in the radial direction is applied in training to
project the field variables onto a uniform grid that can be represented
by a (96, 200) matrix. Notice that reservoir thickness is also a variable
and 96 cells represents a 200 m thick reservoir. When the reservoir
is thinner than 200 m, we use zero-padding to denote cells that are
outside of the actual reservoir. For the scalar variables, the values are
simply broadcast into a matrix with dimension of (96, 200).

In addition to the input variables, we also supply the spatial grid
information to the training by using one channel to denote radial cell
dimensions and another channel to denote vertical cell dimensions.
The temporal grid information is supplied into the network as an
additional dimension. The input to each data sample is constructed
by concatenating the field variables, scalar variables, spatial grids, and
temporal grid together.

For the gas saturation and pressure buildup outputs as shown in
Fig. 1B and C, we use the same logarithm conversion to project the out-
puts onto a uniform grid. We then concatenate the outputs for different
time snapshots to obtain a spatial–temporal 3D volume. The pressure
buildup is normalized into zero-mean and unit-variance distribution.
For gas saturation, we do not normalize the data because the saturation
values always range from 0 to 1. The dimensions of the input and
outputs are shown for in each model architecture (Appendix D to G).

The data set contains 5500 input-to-output mappings. We use a
9/1/1 split to segregate the data set into 4500 samples for training,
500 samples for validation, and 500 samples for testing.
5

3.5. Loss function design and training

We use a relative 𝑙𝑝-loss to train the deep learning models. The
𝑙𝑝-loss is applied to both the original output (𝑦 (𝑟, 𝑧, 𝑡)) and the first
derivative of the output in the 𝑟-direction (d𝑦∕d𝑟), and is written as:

𝐿(𝑦, �̂�) =
‖𝑦 − �̂�‖𝑝
‖𝑦‖𝑝

+ 𝛽
‖

d𝑦∕d𝑟 − ̂d𝑦∕d𝑟‖𝑝
‖

d𝑦∕d𝑟‖𝑝
, (12)

where �̂� is the predicted output, ̂d𝑦∕d𝑟 is the first derivative of the
predicted output, 𝑝 is the order of norm, and 𝛽 is a hyper-parameter.
This relative loss has a regularization effect and is particularly effective
when the data have large variances on the norms. Our experiments
show that, compared to an 𝑀𝑆𝐸-loss, a relative loss significantly
improves the performance for both gas saturation and pressure buildup.
The second term in Eq. (12) greatly improves quality of predictions
for gas saturation at the leading edge of the plume. Similarly this term
improves prediction of the sharp pressure buildup around the injection
well. We use the 𝑙2-loss for gas saturation and pressure buildup since
it provides faster convergence than the 𝑙1-loss.

As described in Section 2, our data set contains reservoirs with
various thicknesses and the cells outside of the reservoir are padded
with zeros for both input and output. To accommodate for the variable
reservoir thicknesses, during training, we construct an active cell mask
for each data sample and only calculate the loss within the mask.
Our experiments show that this loss calculation scheme achieves better
performance than calculating the whole field because of the better
gradient distribution efficiency.

During training, the initial learning rate is specified to be 0.001 and
the learning rate gradually decreases with a constant step and reduction
rate. These hyper-parameters are optimized for the gas saturation and
pressure buildup model separately. The training stops when the loss no
longer decreases, which is 100 and 140 epochs for the gas saturation
and pressure buildup model respectively.

4. Results

This section compares 4 types of model architectures: original FNO
proposed in Li et al. (2020a), the newly proposed U-FNO in this paper,
a conv-FNO that uses a conv3d in the place of the U-Net, and the
state-of-the-art benchmark CNN used in Wen et al. (2021a). All models
are trained on the proposed loss function (Eq. (12)) and directly output
the 3D (96×200×24) gas saturation and pressure field in space and time.
Detailed parameters for each model are summarized in Appendix D to
G.
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Fig. 4. A. Gas saturation testing set plume mean absolute error (𝑀𝑃𝐸) and plume 𝑅2 scores (𝑅2
𝑝𝑙𝑢𝑚𝑒) using CNN, FNO, conv-FNO, and U-FNO. B. Pressure buildup field mean

relative error (𝑀𝑅𝐸) and 𝑅2 scores using the same four models.
Fig. 5. Visualizations and scatter plots for example a to d. In each example, visualizations show the true gas saturation (𝑆𝐺), U-FNO predicted, U-FNO absolute error, CNN
predicted, and CNN absolute error. The mean absolute error 𝜇𝑀𝐴𝐸 is labeled on the U-FNO and CNN absolute error plots. Scatter plots shows numerical simulation vs. predicted
by U-FNO and CNN model on each grid. The legend for all of the scatter plots is shown in the bottom right.
4.1. Gas saturation

Fig. 3A demonstrates that the best performance for both the training
and validation data set is achieved with the U-FNO model. Interest-
ingly, for the gas saturation model, we notice that although the original
FNO has a higher training relative loss than the CNN benchmark, the
validation relative loss by the original FNO is lower than that of the
CNN benchmark. This indicates that FNO has excellent generalization
ability and achieves better performance than the CNN even though
FNO has a higher training relative loss. Nevertheless, the original FNO
has the highest relative loss in the training set due to the inherent
regularization effect by using a finite set of truncated Fourier basis. The
Conv-FNO and U-FNO architecture is therefore designed to enhance
the expressiveness by processing the higher frequency information that
are not picked up by the Fourier basis. We can observe from Fig. 3A
that the training loss is significantly improved even by simply adding a
plain conv3d in the Conv-FNO case. When the FNO layer is combined
with a U-Net in the U-FNO case, the model takes the advantages of
6

both architectures and consistently produces the lowest relative loss
throughout the entire training (Fig. 3A).

Fig. 4A demonstrates the testing set plume mean absolute error
(𝑀𝑃𝐸) and plume 𝑅2 scores (𝑅2

𝑝𝑙𝑢𝑚𝑒) for each model architectures. We

evaluate the gas saturation models’ accuracy within the CO2 separate
phase plume because the gas saturation outside of the plume is always
0. Here ‘‘within the plume’’ is defined as non-zero values in either data
or prediction. The testing set results represent the predictability of the
model on truly unseen data and U-FNO achieves the best performance
with the lowest 𝑀𝑃𝐸 and highest 𝑅2

𝑝𝑙𝑢𝑚𝑒. Comparing to the benchmark
CNN, the average test set 𝑀𝑃𝐸 using U-FNO is 46% lower while
the 𝑅2

𝑝𝑙𝑢𝑚𝑒 increased from 0.955 to 0.981. We can also compare the
degree of overfitting by calculating the difference between the training
and testing set 𝑀𝑃𝐸 (refer to Appendix I for training set 𝑀𝑃𝐸). For
example, the average 𝑀𝑃𝐸 difference in CNN is 70% higher than in
U-FNO (1.0% and 0.3% respectively).
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Fig. 6. Visualizations and scatter plots for examples a to d. In each example, visualizations show the true pressure buildup (𝑑𝑃 ), U-FNO predicted, U-FNO relative error, CNN
predicted, and CNN relative errors. The relative errors are defined as in Tang et al. (2021); the mean relative error 𝜇𝑀𝑅𝐸 is labeled on the U-FNO and CNN relative error plots.
Scatter plots shows numerical simulation vs. predicted by U-FNO and CNN model on each grid. The legend for all of the scatter plots is shown in the bottom right.
In addition to considering the average performance over the entire
training, validation, and testing sets, we also compare model pre-
dictions for four different cases with varying degrees of complexity
in Fig. 5. For each case, Fig. 5 shows a comparison between the
predicted and true values of the CO2 saturation for each grid cell in
the model over the entire 30 year injection period. The U-FNO has
superior performance compared to the CNN for all of these examples as
quantified by the higher 𝑅2 value and narrower 95% prediction bands.
Case b. and d. are especially obvious examples in which the U-FNO
successfully predicts the complicated horizontal saturation variations
where the CNN ignores the heterogeneity and simply predicts more
uniform saturation fields.

4.2. Pressure buildup

For pressure buildup, the U-FNO also achieves the lowest relative
error for both training and validation data sets. As shown in Fig. 3B, the
training and validation relative errors for the U-FNO are consistently
low throughout the training process. Fig. 4 shows U-FNO’s superior
testing set performance in field mean relative error (𝑀𝑅𝐸) and 𝑅2

score. Specifically, the test set average 𝑀𝑅𝐸 is reduced by 24% from
CNN to U-FNO. By comparing the differences between the training and
testing sets in Appendix I, we can observe that all FNO-based models
produce smaller overfitting compared to CNN.

The superior performance of the U-FNO for pressure buildup pre-
dictions is also demonstrated for the four examples shown in Fig. 6.
In each case the U-FNO has higher R2 values and narrower 95%
prediction bands. Unlike the gas saturation outputs, pressure buildup
distributions are challenging to predict since they have a larger radius
of influence and larger differences between cases. For example, the
maximum pressure buildup in the 4 examples shown in Fig. 6 varies
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from ∼20 bar to ∼220 bar. Notice that the CNN model especially
struggles with cases that have large radius of influence (e.g. case d)
while the U-FNO model maintains excellent accuracy at locations that
are far away from the injection well.

5. Discussion

5.1. U-FNO’s advantages over CNN

5.1.1. Data utilization efficiency
The results in Section 4 demonstrate the excellent generalization

ability of the FNO-based architectures. To further compare the data
utilization efficiency of the newly proposed U-FNO model with the
benchmark CNN, we train each model using various numbers of sam-
ples and plotted the testing set 𝑀𝑃𝐸 and 𝑀𝑅𝐸 in Fig. 7. Each model
is trained for the same number of epochs. For gas saturation, the CNN
requires up to 3.4 times more training data to achieve the same level
of performance as the U-FNO. Similarly, the pressure buildup CNN
requires 2.4 times more training data to achieve a test set 𝑀𝑅𝐸 of
1%. In practical terms, the U-FNO saved 530 and 440 CPU hours
in data set generation for the gas saturation and pressure buildup
models respectively (for a reference CNN model trained with 4500
training samples). Fig. 7 also indicates that the CPU hours saved by
using U-FNO grows increasingly as test set errors reduces. The U-FNO’s
data utilization efficiency greatly alleviates the computational resource
needed in data generation and training, therefore can better support
complex high-dimensional problems.

5.1.2. Accuracy in the ‘‘front’’ determination
Gas saturation and pressure buildup ‘‘fronts’’ are important quanti-

ties for CO storage projects and are often used for regulatory oversight
2
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Fig. 7. A. Gas saturation testing set 𝑀𝑃𝐸 vs. training size for U-FNO and CNN. The gray text labels the CNN to U-FNO training size ratios. The CPU hours saved are calculated
using the average simulation time and linear interpolation of the 𝑀𝑃𝐸 vs. training size relationship. B. Pressure buildup testing set 𝑀𝑅𝐸 vs. training size for U-FNO and CNN.
The CPU hours saved are calculated same as above.
Table 2
Accuracy of U-FNO and CNN for (a) gas saturation ‘‘front’’ prediction, and (b) pressure
buildup ‘‘front’’ prediction. Both comparisons are performed on the testing set.

(a) Here gas saturation ‘‘front’’ is defined as the maximum extend of separate
phase CO2 above the threshold value 0.01. The error of gas saturation ‘‘front’’ is
calculated as the absolute difference between true and predicted gas saturation
‘‘front’’ divided by true gas saturation ‘‘front’’.

CNN U-FNO

Gas saturation ‘‘front’’ error (%) 9.2 3.4

(b) Here pressure buildup ‘‘front’’ is defined as the radius of pressure buildup
above the threshold value 0.5 bar. The error of pressure buildup ‘‘front’’ is
calculated same as in (a).

CNN U-FNO

Pressure buildup ‘‘front’’ error (%) 21.2 12.0

(EPA, 2013), monitoring, or history matching (Lengler et al., 2010)
purposes. The distance to the gas saturation ‘‘front’’ corresponds to the
maximum extent of the plume of separate phase CO2. The pressure
buildup ‘‘front’’ often refers to the radius at a specified threshold
value of pressure buildup because pressure fields are smooth. In this
experiment, we compare the accuracy of the U-FNO and CNN models
to evaluate the gas saturation and pressure buildup ‘‘fronts’’. Table 2(a)
and (b) shows that the U-FNO is 2.7 times more accurate than the
CNN for saturation ‘‘front’’ prediction and 1.8 times more accurate for
pressure ‘‘front’’ prediction.

5.1.3. Accuracy in the heterogeneous geological formations
The U-FNO is more accurate than the CNN for highly heterogeneous

geological formations. The training data set includes a wide variety of
homogeneous to heterogeneous permeability maps. For this compari-
son, we selected the most ‘‘heterogeneous’’ and most ‘‘homogeneous’’
formations from the testing set that have the highest and lowest 10%
permeability standard deviations. Table 3 summarized the average gas
saturation 𝑀𝑃𝐸 in both types of formations using U-FNO and CNN. For
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Table 3
Gas saturation 𝑀𝑃𝐸 in the most heterogeneous and homogeneous formations with the
highest and lowest 10% permeability standard deviations in the testing set.

Gas saturation 𝑀𝑃𝐸 (%) CNN U-FNO

‘‘Heterogeneous’’ formation 4.7 2.7
‘‘Homogeneous’’ formation 2.0 1.5

the most heterogeneous geological formations, the U-FNO is 1.7 times
more accurate than CNN in gas saturation.

5.2. Computational efficiency analysis

We summarize the computational efficiency of the CNN, FNO, Conv-
FNO, and U-FNO in Table 4. The training and testing times are both
evaluated on a Nvidia A100-SXM GPU. Once the gas saturation and
pressure buildup models are trained, we can directly use these deep
learning models as a general-purpose numerical simulator alternative
(Wen et al., 2021a). Note that when machine learning models are
used in a task-specific ‘‘surrogate’’ context, the training and data col-
lection time are sometimes included in the computational efficiency
calculation. However, for the application that we are proposing, the
model is trained only once. For subsequent predictions, the trained
machine learning model is directly used. Therefore, we compare the
machine learning model prediction time to the time that would have
been required by using the numerical simulator. To evaluate the com-
putational efficiency speed-up, we compare the forward simulation CPU
run time with each machine learning model’s testing time. We run
ECLIPSE simulations on an Intel® Xeon® Processor E5-2670 CPU. Each
simulation uses a fully dedicated CPU. The average run time for 1000
random cases is 10 minutes per run. Faster CPUs are available but will
not materially change the result of this analysis.

Gas saturation and pressure buildup predictions made with all of the
neural network models are at least 104 times faster than conventional
numerical simulation. Notice that FNO-based models are significantly
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Table 4
Summary of the number of parameters, training time, and testing times required for all four models. The testing times are
calculated by taking the average of 500 random cases. The gas saturation and pressure models can be tested separately. The
speed-up is compared with average numerical simulation run time of 10 mins.

# Parameter Training Testing

Gas saturation Pressure Speed-up vs. numerical
(–) (s/epoch) (s) buildup (s) simulation (times)

CNN 33,316,481 562 0.050 0.050 1 × 104

FNO 31,117,541 711 0.005 0.005 1 × 105

Conv-FNO 31,222,625 1135 0.006 0.006 1 × 105

U-FNO 33,097,829 1872 0.010 0.010 6 × 104
Table 5
𝑅2 score comparison for FNO, conv-FNO, and U-FNO models at the original and refined
time steps. The scores are calculated by taking the average for 50 examples.

Gas saturation Pressure buildup

FNO conv-FNO U-FNO FNO conv-FNO U-FNO

Original time step 0.989 0.991 0.993 0.995 0.995 0.996
Refined time step 0.986 0.988 0.987 0.992 0.993 0.992

faster at testing but slower at training than the CNN model. For our
problem, we prioritize the prediction accuracy and testing time over
the training time, which the U-FNO provides. For problems that are
more sensitive to training time, one could also use the Conv-FNO which
provides both high accuracy and relatively fast training.

5.3. Inference at unseen time steps

FNO-based architectures are infinite-dimensional operators that can
provide grid-invariant predictions. However, by adding the convolution
path in conv-FNO and the U-Net path in U-FNO, we sacrificed the
inherent grid-invariant feature of the FNOs. To reintroduce the ability
to provide predictions at unseen time steps, for conv-FNO and U-FNO,
we applied additional down-sampling and up-sampling operations to
the convolution blocks and U-Net blocks, which transform the new
resolution to the original resolution in the temporal dimension.

To demonstrate the performance of this technique, here we test the
original FNO, conv-FNO, and U-FNO at a temporal resolution that was
not used in training. We generated 50 new data samples where each
sample has 48-time steps; each time step is obtained through refining
the original step size by 50%. The original FNO is directly applied to the
refined data set, while conv-FNO and U-FNO are modified as described
above. Table 5 summarized the average 𝑅2 score on the new data set
in comparison to the original data set .

While the performance for all models slightly decreases with the
refined time steps, the FNO-based models still provide relatively good
estimations at unseen times without additional training. Interestingly,
we observe that conv-FNO performs the best for both gas saturation
and pressure buildup. We hypothesize that this is because the Fourier
layers in the conv-FNO are more efficient than in the original FNO due
to the presence of the convolution layer. Meanwhile, the convolution
layer is less influential to the outputs compared to the U-Net component
in U-FNO, therefore provides the best results at refined time steps.

5.4. Fourier kernel visualization

As described in Section 2, the Fourier path within each U-Fourier
layer contains trainable kernel 𝑅 that is parameterized in the Fourier
space. Here we provide visualizations for a random selection of the
Fourier kernels in the trained gas saturation and pressure buildup
models. Notice that unlike traditional CNN kernels that are generally
small (e.g., (3, 3, 3) or (7, 7, 7)), Fourier kernels are full field kernels
that can be interpreted by any grid discretization. The kernels in
this paper are 3D kernels with dimensions (𝑟, 𝑧, 𝑡) and the examples
shown in Fig. 8 are the (𝑟, 𝑧) directional slices evaluated using the data
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discretization. Both gas saturation and pressure buildup models contain
a wide variety of kernels from low to high frequency. We hypothesize
that the asymmetry in the 𝑟 direction might be related to the gradually
coarsening 𝑟-directional grid resolution, while the asymmetry in the 𝑧
direction might be related to the effects of buoyancy since CO2 is less
dense than water and tends to migrate to the top of the reservoir.

6. Conclusion

This paper presents U-FNO, an enhanced Fourier neural operator for
solving multiphase flow problems. We demonstrate that U-FNO predicts
highly accurate flow outputs for a complex CO2-water multiphase flow
problem in the context of CO2 geological storage.

Through comparisons with the original FNO architecture (Li et al.,
2020a) and a state-of-the-art CNN benchmark (Wen et al., 2021a), we
show that the newly proposed U-FNO architecture provides the best
performance for both gas saturation and pressure buildup predictions.
The U-FNO architecture enhances the training accuracy of a original
FNO. At the same time, U-FNO maintains the excellent generalizability
of the original FNO architecture. For the CO2-water multiphase flow
application described here, our goal is to optimize for the accuracy of
gas saturation and pressure fields, for which the U-FNO provides the
highest performance.

The trained U-FNO model generates gas saturation and pressure
buildup predictions that are 6 × 104 times faster than a traditional
numerical solver. The significant improvement in the computational
efficiency can support many engineering tasks that require repetitive
forward numerical simulations. For example, the trained U-FNO model
can serve as an alternative to full physics numerical simulators in
probabilistic assessment, inversion, and site selection, tasks that were
prohibitively expensive with desirable grid resolution using numerical
simulation.

Code and data availability

The python code for U-FNO model architecture and the data set
used in training is available at https://github.com/gegewen/ufno. Web
application https://ccsnet.ai hosts the trained U-FNO models to provide
real time predictions.
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Fig. 8. Visualizations of random selections of (𝑟, 𝑧) directional kernels for trained A. gas saturation and B. pressure buildup models.
Fig. C.9. Horizontal permeability map, anisotropy map, and porosity map for A. Gaussian, B. von Karman, C. Discontinuous, and D. Homogeneous medium appearances.
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Appendix A. Table of notations

See Table A.6.

Appendix B. Grid discretization

See Table B.7.

Appendix C. Heterogeneous permeability map statistical parame-
ters and visualizations

See Table C.8 and Fig. C.9.
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Appendix D. Darcy flow comparison

Here we compared the performance of U-FNO with the original FNO
on a steady-state Darcy’s flow problem. Since this is a 2D problem, we
used the 2D variation of U-FNO where we append a 2D U-Net to the 2D
Fourier layer. The steady-state Darcy flow problem data set is provided
in Li et al. (2020a). Fig. D.10 shows that U-FNO achieves lower relative
loss than FNO for both training and validation set. We also compared
the validation set relative loss with 4 state-of-the-art benchmark models
in Table D.9. The Darcy flow example demonstrates that the advantage
of using U-FNO is not limited to multi-phase flow application.

Appendix E. CNN benchmark model architecture

See Table E.10.

Appendix F. FNO model architecture

See Table F.11.

Appendix G. Conv-FNO model architecture

See Table G.12.

Appendix H. U-FNO model architecture

See Table H.13.

Appendix I. Training, validation, and testing set accuracy

See Table I.14.
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Table A.6
Table of notations.

Notation Meaning

Operator learning 𝐷 ∈ R𝑑 The spatial domain for the problem
𝑎 ∈  = 𝐷;R𝑑𝑎 Input coefficient functions
𝑧 ∈  = 𝐷;R𝑑𝑧 Target solution functions
† ∶  →  The operator mapping from coefficients to solutions
n The size of the discretization
x Points in the spatial domain
𝐷𝑗 = {𝑥1 ,… , 𝑥𝑛} ⊂ 𝐷 The discretization of (𝑎𝑗 , 𝑢𝑗 )
𝜃 An approximation of †

𝜇 A probability measure where 𝑎𝑗 is sampled from
𝐶 Cost function

U-FNO 𝑎(𝑥) The discretized data input
𝑧(𝑥) The discretized data output
𝑣𝑙𝑗 (𝑥), 𝑗 = 0,… , 𝐿 High dimensional representation of 𝑎(𝑥) in Fourier layers
𝑣𝑚𝑘

(𝑥), 𝑘 = 0,… ,𝑀 − 1 High dimensional representation of 𝑎(𝑥) in U-Fourier layers
𝑄(⋅) The lifting neural network
𝑃 (⋅) The projection neural network

U-Fourier layer  The Kernel integral operator applied on 𝑣𝑙 and 𝑣𝑚
𝑅 The linear transformation applied on the lower Fourier modes
𝑊 The linear transformation (bias term) applied on the spatial domain
𝑈 The U-Net operator applied on 𝑣𝑙 and 𝑣𝑚
𝜎 The activation function
 ,−1 Fourier transformation and its inverse
𝜅 The kernel function learned from data
𝑘𝑚𝑎𝑥 The maximum number of modes
𝑐 The number of channels

Governing equation 𝜂 = CO2 , 𝑤𝑎𝑡𝑒𝑟 Components of CO2 and water
𝑝 = 𝑤, 𝑛 Phases of wetting and non-wetting
𝜑 The pore volume
𝑡 Time
𝑆𝑝 The saturation of phase 𝑝
𝜌𝑝 The density of phase 𝑝
𝑋𝑝 The mass fraction of phase 𝑝
𝐅 Flux
𝑞 The source term
𝑃𝑝 The pressure of phase 𝑝
𝑘 The absolute permeability
𝑘𝑟,𝑝 The relative permeability of phase 𝑝
𝜇𝑝 The viscosity of phase 𝑝
𝐠 Gravitational acceleration

Sampling variable Refer to Table 1
Table B.7
Vertical, radial, and temporal grid discretization for ECLIPSE numerical simulation runs.
The radial grid width gradually coarsens as 𝑑𝑟𝑚𝑖𝑛 × 𝑎𝑗−1𝑟 , for 𝑗 ∈ [1,… , 𝑖𝑟]. The temporal
step size gradually coarsens as 𝑑𝑡𝑚𝑖𝑛 × 𝑎𝑗−1𝑡 , for 𝑗 ∈ [1,… , 𝑖𝑡].

Dimension Parameter Notation Value Unit

Vertical (𝑧) Box boundary 𝑧𝑚𝑎𝑥 12.5 to 200 m
Grid count 𝑖𝑧 6 to 96 –
Grid thickness 𝑑𝑧 2.08 m

Radial (𝑟) Box boundary 𝑟𝑚𝑎𝑥 1,000,000 m
Grid count 𝑖𝑟 200 –
Minimum grid width 𝑑𝑟𝑚𝑖𝑛 3.6 m
Amplification factor 𝑎𝑟 1.035012 –
Well radius 𝑟𝑤𝑒𝑙𝑙 0.1 m

Temporal (𝑡) Total length 𝑡𝑚𝑎𝑥 30 years
Step count 𝑖𝑡 24 –
Minimum step 𝑑𝑡𝑚𝑖𝑛 1 day
Amplification factor 𝑎𝑡 1.421245 –
11
Fig. D.10. Relative loss evolution vs. epoch for Darcy’s flow problem by the FNO and
U-FNO architecture.
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Table C.8
Statistical parameters of horizontal permeability (𝑘𝑥) maps generated by Stanford Geostatistical Modeling Software (SGeMS)
(Remy et al., 2009). We defined the medium appearance, spatial correlation, mean, standard deviation, and contrast ratio
(𝑘ℎ𝑖𝑔ℎ∕𝑘𝑙𝑜𝑤) in each map to create a large variety of permeability maps.

Medium Parameter Mean Std Max Min Unit

A. Gaussian Field average 30.8 58.3 1053 0.3 mD
Vertical correlation 7.3 3.6 12.5 2.1 m
Horizontal correlation 2190 1432 6250 208 m
Contrast ratio 4.01 × 104 2.19 × 105 3.00 × 106 1.01 –

B. von Karman Field average 39.9 54.4 867.9 1.8 mD
(Carpentier and Roy-Chowdhury, 2009) Vertical correlation 7.2 3.5 12.5 2.1 m

Horizontal correlation 2.15 × 104 1.40 × 104 6.23 × 104 208 m
Contrast ratio 2.66 × 104 1.54 × 105 2.12 × 106 1.00 –

C. Discontinuous Field average 80.8 260.2 5281 2.0 mD
Vertical correlation 7.2 3.6 12.5 2.1 m
Horizontal correlation 2176 1429 6250 208 m
Contrast ratio 2.17 × 104 1.51 × 105 2.68 × 106 1.01 –

D. Homogeneous Field permeability 327.7 478.1 1216 4.0 mD
Table D.9
Relative loss in comparison to benchmark models. FCN is a Fully Convolution Network
proposed in Zhu and Zabaras (2018); PCANN is an operator method using PCA as
autoencoder proposed in Bhattacharya et al. (2020); GNO is the graph neural operator
proposed in Li et al. (2020c); and FNO is the original Fourier neural operator (Li et al.,
2020a). The performance of these above models are listed in Li et al. (2020a).

Model Validation set relative loss

FCN (Zhu and Zabaras, 2018) 0.1097
PCANN (Bhattacharya et al., 2020) 0.0299
GNO (Li et al., 2020c) 0.0369
FNO (Li et al., 2020a) 0.0098
U-FNO (this paper) 0.0061

Table E.10
CNN architecture. Conv3D denotes a 3D convolutional layer; BN denotes a batch
normalization layer; ReLu denotes a rectified linear layer; Add denotes an addition
with the identity; UnSampling denotes an unSampling layer that expands the matrix
dimension using nearest neighbor method, and Padding denotes a padding layer using
the reflection padding technique. In this model, the number of total parameters is
33,316,481 with 33,305,857 trainable parameters and 10,624 non-trainable parameters.
To ensure a fair comparison with the FNO-based models, we performed hyper-parameter
optimization on the CNN benchmark model and trained it with the same loss function
(Eq. (12)) as the FNO-based models.

Part Layer Output Shape

Input – (96,200,24,1)
Encode 1 Conv3D/BN/ReLu (48,100,12,32)
Encode 2 Conv3D/BN/ReLu (48,100,12,64)
Encode 3 Conv3D/BN/ReLu (24,50,6,128)
Encode 4 Conv3D/BN/ReLu (24,50,6,128)
Encode 5 Conv3D/BN/ReLu (12,25,3,256)
Encode 6 Conv3D/BN/ReLu (12,25,3,256)
ResConv 1 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 2 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 3 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 4 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 5 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
Decode 6 UnSampling/Padding/Conv3D/BN/Relu (12,25,3,256)
Decode 5 UnSampling/Padding/Conv3D/BN/Relu (24,50,6,256)
Decode 4 UnSampling/Padding/Conv3D/BN/Relu (24,50,6,128)
Decode 3 UnSampling/Padding/Conv3D/BN/Relu (48,100,12,128)
Decode 2 UnSampling/Padding/Conv3D/BN/Relu (48,100,12,64)
Decode 1 UnSampling/Padding/Conv3D/BN/Relu (96,200,24,32)
Output Conv3D (96,200,24,1)
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Table F.11
FNO model architecture. The Padding denotes a padding operator that accommodates
the non-periodic boundaries; Linear denotes the linear transformation to lift the input
to the high dimensional space, and the projection back to original space; Fourier3d
denotes the 3D Fourier operator; Conv1d denotes the bias term; Add operation adds
the outputs together; ReLu denotes a rectified linear layer. In this model, the number
of total parameters is 31,117,541.

Part Layer Output Shape

Input – (96, 200, 24, 12)
Padding Padding (104, 208, 32, 12)
Lifting Linear (104, 208, 32, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 4 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 5 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 6 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Projection 1 Linear (104, 208, 32, 128)
Projection 2 Linear (104, 208, 32, 1)
De-padding – (96, 200, 24, 1)

Table G.12
Conv-FNO model architecture. The Padding denotes a padding operator that ac-
commodates the non-periodic boundaries; Linear denotes the linear transformation
to lift the input to the high dimensional space, and the projection back to original
space; Fourier3d denotes the 3D Fourier operator; Conv1d denotes the bias term;
Conv3d denotes a 3D convolutional operator; Add operation adds the outputs together;
ReLu denotes a rectified linear layer. In this model, the number of total parameters is
31,222,625.

Part Layer Output Shape

Input – (96, 200, 24, 12)
Padding Padding (104, 208, 32, 12)
Lifting Linear (104, 208, 32, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Conv-Fourier 1 Fourier3d/Conv1d/Conv3d/Add/ReLu (104, 208, 32, 36)
Conv-Fourier 2 Fourier3d/Conv1d/Conv3d/Add/ReLu (104, 208, 32, 36)
Conv-Fourier 3 Fourier3d/Conv1d/Conv3d/Add/ReLu (104, 208, 32, 36)
Projection 1 Linear (104, 208, 32, 128)
Projection 2 Linear (104, 208, 32, 1)
De-padding – (96, 200, 24, 1)
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Table H.13
U-FNO model architecture. The Padding denotes a padding operator that accommo-
ates the non-periodic boundaries; Linear denotes the linear transformation to lift
he input to the high dimensional space, and the projection back to original space;
ourier3d denotes the 3D Fourier operator; Conv1d denotes the bias term; UNet3d
enotes a two step 3D U-Net; Add operation adds the outputs together; ReLu denotes
rectified linear layer. In this model, the number of total parameters is 33,097,829.
Part Layer Output Shape

Input – (96, 200, 24, 12)
Padding Padding (104, 208, 32, 12)
Lifting Linear (104, 208, 32, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
U-Fourier 1 Fourier3d/Conv1d/UNet3d/Add/ReLu (104, 208, 32, 36)
U-Fourier 2 Fourier3d/Conv1d/UNet3d/Add/ReLu (104, 208, 32, 36)
U-Fourier 3 Fourier3d/Conv1d/UNet3d/Add/ReLu (104, 208, 32, 36)
Projection 1 Linear (104, 208, 32, 128)
Projection 2 Linear (104, 208, 32, 1)
De-padding – (96, 200, 24, 1)

Table I.14
Training, validation, and testing data set performance summary. For each metric, 𝜇
enotes the average and 𝜎 denotes the standard deviation. 𝑀𝑃𝐸 denotes the plume
ean absolute error. 𝑀𝑅𝐸 denotes the field mean relative error as defined in Tang

t al. (2020). 𝑅2
𝑝𝑙𝑢𝑚𝑒 denotes the 𝑅2 score in the plume area.

(a) Gas saturation (𝑆𝐺)

Metric Data set Value CNN FNO conv-FNO U-FNO

𝑀𝑃𝐸

Train 𝜇 0.0200 0.0238 0.0191 0.0126
𝜎 0.0110 0.0129 0.0101 0.0069

Val 𝜇 0.0280 0.0265 0.0214 0.0154
𝜎 0.0165 0.0153 0.0119 0.0097

Test 𝜇 0.0299 0.0276 0.0224 0.0161
𝜎 0.0175 0.0160 0.0125 0.0105

𝑅2
𝑝𝑙𝑢𝑚𝑒

Train 𝜇 0.982 0.971 0.980 0.989
𝜎 0.019 0.029 0.021 0.013

Val 𝜇 0.960 0.963 0.973 0.982
𝜎 0.043 0.038 0.028 0.024

Test 𝜇 0.955 0.961 0.970 0.981
𝜎 0.047 0.039 0.033 0.025

(b) Pressure buildup (𝑑𝑃 )

Metric Data set Value CNN FNO conv-FNO U-FNO

𝑀𝑅𝐸

Train 𝜇 0.0064 0.0065 0.0067 0.0053
𝜎 0.0060 0.0049 0.0055 0.0045

Val 𝜇 0.0096 0.0083 0.0081 0.0072
𝜎 0.0085 0.0063 0.0067 0.0058

Test 𝜇 0.0089 0.0082 0.0078 0.0068
𝜎 0.0063 0.0052 0.0048 0.0045

𝑅2

Train 𝜇 0.990 0.991 0.992 0.994
𝜎 0.029 0.014 0.018 0.014

Val 𝜇 0.988 0.990 0.991 0.993
𝜎 0.023 0.017 0.018 0.015

Test 𝜇 0.987 0.989 0.990 0.992
𝜎 0.023 0.021 0.020 0.020
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