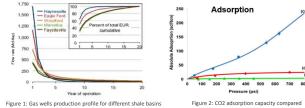
Breakdown Pressure of Green River Shale With sc-CO₂ and Water Monitored Using X-ray Computed Tomography (MR13B-0072)

Talal Al Shafloot (talalss@Stanford.edu), Tae Wook Kim (taewkim@Stanford.edu) and Anthony Kovscek (Kovscek@stafnord.edu)



UNIVERSITY

OF ENERGY RESOURCES ENGINEERING, STANFORD ARTMENT

Introduction

- The very steep drop in the first 30-40 months of producing gas wells (Fig. 1) supports that natural and induced fractures are the main production contributors in this period.
- Aqueous fracturing disadvantages: liquid loading, long flowback periods and swelling and dispersion of some clay minerals.
- Properties of supercritical CO₂: Greater adsorption capacity in shale (Fig. 2), inducing thermal stress when it expands, and unique physical properties.
- Understanding fracture behavior (e.g. breakdown pressure) is important for fracturing job design and fracturing avoidance during CO2 sequestration and stimulation jobs.

in the US (U.S. Energy Information administration (2013) to other gases for shale(Aljamaan, 2015)

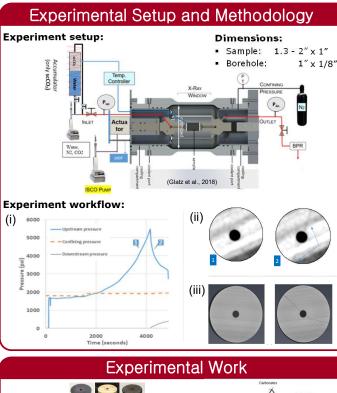
Background

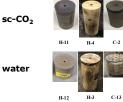
Breakdown pressure models

Breakdown pressure model	Review	Reference					
Classical model	Performs well when there is no permeation	(Hubbert and Willis, 1972)					
Classical + Poroelastic model	Accounts for fluid permeation to matrix	(Haimson et al., 1968)					
Point stress model	might explain wellbore size effect	(Ito and Hayashi, 1991)					
Fracture mechanics based model	Accounts for wellbore size Modified model: might justify pressurization rate influence	(Abou-Sayed et al., 1978 ; Rummel, 1987)					

Factors influencing breakdown pressure

Rock properties


DEP


- Fluid properties
- State of stress
- Pressurization rate
- Borehole size

1. (MPas) Figure 3: Modified after Zhang et al. (2017b)

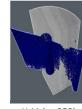
CO2 fracturing experiments for shale

				CO21	_{BDP} < Water _{BDP} CO _{2 BDP} > Water _{BDP}	
Paper	Rock Types	sample dimensions (in)	Stresses	Breakdown pressure results	Fracture status	
Bennour et al., 2015	shale	6.7" * 3.35"	Uniaxial	I-CO2 < oil < water	Water: parallel to bedding	
Li et al., 2016	shale - Green River	2" * 1"	Triaxial	I-CO2 > N2 > water		
Zhang et al., 2017a	shale	7.87"	Triaxial	sc-CO2 < I-CO2 < water	Fracture complexity: sc-CO2 > I-CO2 > water	

Sample	Fluid used	ρb (g/cc)	Dimensions (L*D)	Formation	Depth (ft)	Summary
111	sc-CO2	2.21	2" × 1"	Parachute Creek	2344.1	Fracture observed
14		1.97	2.8" × 1"	Parachute Creek	485.9	Fracture observed
2		2.3	1.9" × 1"	Parachute Creek	7495.3	Fracture observed
12	Water	2.21	1.9" × 1"	Parachute Creek	2344.3	Fracture observed
13		2.04	2.8" × 1"	Parachute Creek	485.7	Fracture observed
13		2.6	1.5" × 1"	Garden Gulch	10486	Failed (leakage at 8870 psi)

Figure 5: Mineral composition of Green River shale along with

tested samples- Modified after Burnham and McConaghy (2014

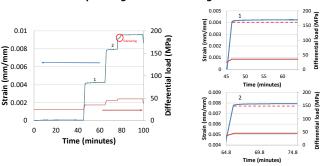

Conclusions

- A general trend of large breakdown pressure and unstable fracture propagation for sc-CO2 treated samples was observed.
- sc-CO₂ reaction to kerogen is expected to increase ductility of samples and hence result in larger breakdown pressure magnitudes.
- Mineral composition variation plays a major role in breakdown pressure. Fracture complexity evaluation is limited as sample size decreases.

Results 50 (edW) 40 <u>ភ</u> 30 OI-CO2 (Li et. al., 2016) water (Li et. al., 2016) **⊊** 20 8 sc-CO2 (our experiment) Water (our experiment) 10 🗖 B 0 0 10 15 20 25 Confining Pressure (MPa) Modified after Li et al., (2016)

Possible explanations for large BP for sc-CO₂ treated samples:

- Different mineral composition: larger ductility than Li et al., (2016) samples
- Reaction to kerogen: large total organic content 200 |
 - Viscoplastic behavior: observed during experiments



H 11 (sc-CO2) sc-CO₂ treated sample: 30 degree from bedding

Water treated sample:

- Parallel to bedding One main fracture
- Slightly branched fracture

C2 short term creep during sc-CO₂ fracturing:

Acknowledgments

I want to acknowledge King Fahd University of Petroleum and Minerals (KFUPM) and Saudi Arabian Cultural Mission (SACM) for my PhD fellowship. I also want to thank Stanford Natural Gas Initiative for their project funding. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152.