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Abstract
A general framework for optimizing the locations and time-varying injection rates of a set of monobore
wells for geological carbon storage is presented and applied. Two objective functions, minimization of
mobile CO2 fraction at the end of the operation, and maximization of storage efficiency, are considered.
Appropriate linear and nonlinear constraints, involving the geometry of the well configuration, injection
rates, and injected mass (for pressure management), are specified. Two derivative-free algorithms, particle
swarm optimization (PSO) and differential evolution (DE), are applied and assessed. The various constraints
are treated using a preprocessing repair procedure, penalty functions, and a filter method. The framework
utilizes multifidelity optimization, in which increasing levels of grid resolution are applied during the
course of the optimization run. For the minimization of mobile CO2 fraction, the multifidelity approach is
compared with high-resolution optimization. This treatment is shown to outperform high-resolution PSO
and DE optimization in terms of both solution quality and computational requirements. The multifidelity DE
optimization case provides the best (feasible) solution, with 0.090 mobile CO2 fraction at 200 years, which
represents a 68% improvement over a heuristic base-case. For the second objective function, multifidelity
PSO provides a design that results in a storage efficiency of 0.074, which is about double the base-case
value. For both objective functions, the optimized solutions contain horizontal and deviated wells placed
near the bottom of the storage aquifer. The well configurations are much different for the two objective
functions, with wells more closely spaced, resulting in a single merged plume, for the storage efficiency
maximization case. For the mobile CO2 minimization case, by contrast, wells are separated and pulsed,
which facilitates dissolution and residual trapping.

Introduction
Carbon capture and storage (CCS) is an essential component in many future low-carbon energy scenarios.
Under the Net Zero scenario, for example, CCS capacity must increase from its current level of
0.044 gigatonnes in 2022 to 7.6 gigatonnes in 2050 (International Energy Agency., 2022). Geologically
sequestered CO2 is contained through four trapping mechanisms, referred to as stratigraphic, residual,
dissolution, and mineral trapping (Smit et al., 2014). Mineralization occurs over very long time scales
in many geological settings, so this trapping mechanism will not be considered in this work. Different
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operational strategies (well locations and injection rates) lead to varying amounts of stratigraphic trapping
relative to residual and dissolution trapping, as well as to large variations in storage efficiency (pore-space
utilization) and plume footprint. Therefore, the objectives of the storage operation impact the design and
real-time management. Objectives can include minimizing the fraction of CO2 trapped stratigraphically
(referred to as mobile CO2), or maximizing storage efficiency. These and other specifications lead
to challenging optimization problems involving expensive function evaluations and multiple nonlinear
constraints.

In this paper, we develop and apply a general framework to optimize the locations and time-varying
CO2 injection rates for multiple 3D horizontal or deviated wells. Realistic nonlinear constraints, which
act to provide acceptable well configurations and limit the amount of pressure buildup in the formation,
are incorporated. Different objective functions, derivative-free optimization algorithms, and optimization
strategies, including multifidelity optimization, are assessed. The framework builds on an earlier workflow
applied for oil field problems (Zou et al., 2022). This workflow includes a ‘geometric repair’ treatment, in
which infeasible well configurations are modified prior to flow simulation.

A number of previous investigators have developed optimization procedures for CO2 storage applications.
For optimization problems involving only well control (meaning well locations were fixed), the objective
function is often continuous, which enables the use of gradient-based methods. Shamshiri and Jafarpour
(2012), for example, used the BFGS algorithm to optimize the injection rates for vertical injectors, with the
goals of minimizing mobile CO2 volume and sweep efficiency (separately). Chen and Pawar (2019) applied
a stochastic simplex approximate gradient (StoSAG) method to optimally control a set of vertical wells.
Their objective was to maximize the life-cycle NPV for CO2 EOR with storage (for which a CO2 tax credit
was applied). Derivative-free methods have also been used for these problems. Jin and Durlofsky (2018)
utilized mesh adaptive direct search (MADS) to minimize the mole fraction of CO2 in the confinement zone
by controlling injection rates for multiple horizontal wells. Zhang and Agarwal (2012) optimized settings for
both vertical and horizontal wells for CO2 water-alternating-gas operations with storage. They used a genetic
algorithm to minimize a metric involving the CO2 plume radius. Park et al. (2021) applied the nondominated
sorting genetic algorithm (NSGA-II) to find the optimal trade-offs between the cost associated with injection
pressure and the amount of CO2 stored. They optimized (constant-in-time) rates for vertical injectors.

The optimization of well locations (configuration), or the joint optimization of well locations and
controls, is more challenging because the objective function can be strongly discontinuous due to geological
heterogeneity. In such cases, derivative-free algorithms may be more attractive than gradient-based methods.
Cameron and Durlofsky (2012) utilized Hooke–Jeeves direct search (HJDS) to optimize the locations and
controls of multiple horizontal CO2 injectors, with the goal of minimizing mobile CO2. Stopa et al. (2016)
applied both a genetic algorithm (GA) and particle swarm optimization (PSO) to optimize the locations
and controls of vertical CO2 injectors to minimize CO2 in the top layer of the model. Goda and Sato
(2013) applied iterative Latin hypercube sampling (ILHS) to maximize immobile CO2 by optimizing the
locations and rates for vertical injectors. Zheng et al. (2021) used controlled NSGA-II to solve multiobjective
problems with coupled flow and geomechanics. Their work involved vertical CO2 injection wells, with
the objectives of maximizing the mass of CO2 injected while minimizing quantities associated with
geomechanical risk. Other algorithms, such as differential evolution, DE (Cihan et al., 2015), and covariance
matrix adaptation evolution strategy, CMA-ES (Miyagi et al., 2018), have also been applied for CO2 storage
operations.

Simulations involving CO2 injection are often sensitive to the level of grid refinement. Yamamoto and
Doughty (2011) and Youssef et al. (2021), for example, demonstrated that low-resolution models can
considerably underestimate the areal extent of the plume. Li et al. (2013) considered cases involving
different grid resolutions for different capillary pressure models and showed that more finely gridded models
displayed faster CO2 dissolution. Shao et al. (2022) constructed reservoir models from high-resolution
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geomodels generated from field data. They identified factors that influence plume shape, extent, and
internal saturation distribution. Because fine-scale simulation of CO2 storage problems is very expensive
computationally, highly resolved models are not practical for use in derivative-free optimization, where
thousands of function evaluations may be required. Thus multifidelity treatments, in which a succession
of models with increasing resolution/accuracy is used over the course of the optimization, may be
appropriate for these problems. Multifidelity optimization has been successfully applied in oil field problems
(Aliyev and Durlofsky, 2017) and has been considered to a limited extent for CO2 storage (Cameron and
Durlofsky, 2012). If a highly resolved geological description is available, multifidelity procedures can
make use of properly upscaled models. Aliyev and Durlofsky (2017), for example, used global single-
phase transmissibility upscaling in this setting. Two-phase upscaling procedures, such as those applied by
Rabinovich et al. (2015) or Mishra et al. (2020), are more accurate and may be even more effective.

Constraints appear in practical optimization problems, and it is important that these are handled
efficiently. Bound constraints on the decision variables (e.g., maximum and minimum injection rate) can
be easily accommodated, whereas linear and nonlinear constraints require additional treatments. In well
control optimization for CO2 storage, pressure buildup appears as a nonlinear constraint that can only be
evaluated after the simulation is performed. Allen et al. (2017) and Miyagi et al. (2018) treated this constraint
using a penalty method. Cihan et al. (2015) optimized the controls for brine extraction with a constraint
specifying no CO2 breakthrough. They used a modified DE algorithm with infeasible solutions penalized
during the selection process. Constrained problems can also be formulated in the context of multiobjective
optimization. Park et al. (2021), for example, considered two objectives – maximizing the amount of trapped
CO2, and minimizing a metric associated with well bottomhole pressures (BHPs).

Previous studies have demonstrated the advantages of using horizontal wells for CO2 storage problems
(Al-Khdheeawi et al., 2017; Jun et al., 2019). It is, therefore, reasonable to introduce additional generality
by incorporating deviated wells. As far as we are aware, optimization of injection scenarios involving
deviated wells has not been previously considered for CCS operations. Constraints on the arrangement of
such wells, e.g., minimum well-to-well and well-to-boundary distance, can be challenging to satisfy for
arbitrary 3D configurations. Here we treat general monobore wells, which can be horizontal or deviated.
We apply the general repair procedure originally introduced by Volkov and Bellout (2018) to reduce or
eliminate geometric infeasibility. This approach was incorporated into derivative-free optimization by Zou
et al. (2022), where it was shown to significantly outperform a standard penalty-method treatment for the
cases considered.

In this study, we generalize the optimization framework developed by Zou et al. (2022) to treat objective
functions and constraints applicable in CO2 storage problems. We also introduce a multifidelity workflow
to accelerate the optimization runs. The optimizations involve the determination of the locations and time-
varying injection rates for multiple wells, which can be horizontal or deviated. The objective functions
considered are the minimization of the mobile CO2 fraction (which corresponds to maximizing residual and
dissolution trapping), and the maximization of storage efficiency. Constraints include maintaining the target
field injection rate, limiting the injection well BHPs, and satisfying specifications on well-configuration
geometry. Both PSO and DE optimization algorithms are applied and evaluated. The target problems involve
the injection of 4 megatonnes CO2 per year, for 30 years, through four wells. To our knowledge, geological
CO2 storage optimization with multiple deviated wells and realistic objective functions and constraints has
not been considered in previous studies. The use of multifidelity treatments in this setting is also new.

This paper proceeds as follows. In the next section, we define the optimization problem and objective
functions considered in this work, describe the integrated optimization framework, constraint handling
methods and multifidelity treatment, and present the aquifer model used in the examples. Next, we present
results using PSO and DE to determine the optimal locations and controls for four horizontal or deviated
CO2 injectors. Two different objective functions are considered, and multifidelity results are compared to
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those from high-resolution optimization (for the first objective function). We conclude with a summary and
suggestions for future work in this area.

Methodology and Aquifer Model
In this section, we first define the optimization problem along with the objective functions and constraints
applied in this study. We then introduce the integrated framework for optimization, which includes the
optimization algorithms and constraint handling methods. Next, we describe the aquifer model used in this
study. Finally, grid-refinement results for a base-case setup are presented.

Problem Statement and Objective Function
The optimization problem entails determining the locations and time-varying injection rates for a set of
monobore (linear) wells. There are Nw wells, each defined by the (x, y, z) values of their two endpoints.
Injection fractions for each well, in Nt control periods, will also be determined. The optimization problem
is written as:

(1a)

(1b)

In Eq. 1, f is the objective function we seek to minimize. The vector u ∈ U ⊂ ℝn (n = 6Nw + Nw × Nt)
contains the set of decision variables. This can be expressed as u = [ul, uc], where ul ∈ ℝ6Nw is the set of well
locations and uc ∈ ℝNw × Nt is the set of time-varying injection fractions (controls). The subspace U contains
all bound constraints imposed on the well locations and controls. The numerical solution g is a function
of both the state variables x and well variables u. Constraints (linear and nonlinear) are represented by C,
which depends on both well locations and controls. Constraints are satisfied when C = 0. The constraints
considered in this study will be described in the next section.

The well location variable ul can be further expanded as ul = [ũ1, …, ũi, …, ũNw], where ũi ∈ ℝ6 and
i = 1, …, Nw. Each well ũi is treated as a linear segment in 3D, defined by the coordinates of its heel

 and toe . Wells are considered to be perforated along the full heel-to-toe
trajectory. The determination of the intersected grid blocks and the computation of well index follow the
approaches described by Volkov and Bellout (2018). The well control variables uc can be expressed as uc

= [u˚1, …, u˚i, …, u˚Nw], where u˚i ∈ ℝNt is the set of injection fractions for well i over Nt control periods.
Hence, u˚i = [ui,1, …, ui,t, …, ui,Nt] and t = 1, …, Nt. A constraint will be introduced to assure the injection
fractions sum to unity at each control period.

Two different objective functions will be considered in this study. The first objective is to minimize the
mobile CO2 fraction in the system at the end of the simulation time frame. This acts to facilitate dissolution
and residual trapping, which are potentially ‘safer’ storage mechanisms. This objective function, denoted
f1, is computed as

(2)

where mm is the mass (in kg-mol) of mobile CO2 in the full system at final simulation time Tf, and mt is the
total mass of CO2 injected into the system. Here we take Tf = 200 years.

The second objective is to maximize CO2 storage efficiency. This can be quantified in various ways –
here we seek to maximize the ratio between the gas phase CO2 volume and an appropriate reservoir volume.
Similar to the treatments of Wen et al. (2021) and Bachu (2015), we define this objective, denoted f2, as

D
ow

nloaded from
 http://onepetro.org/spersc/proceedings-pdf/23R

SC
/2-23R

SC
/D

021S010R
003/3095237/spe-212228-m

s.pdf/1 by Stanford U
niversity user on 24 M

arch 2023



SPE-212228-MS 5

(3)

In Eq. 3, the numerator is the total pore volume containing CO2 in the gas phase, where Vi, ϕi, and Si

represent the bulk volume, porosity, and CO2 gas saturation in block i ∈ Dsa at the end of the simulation
run (200 years). Here Dsa denotes the storage aquifer and i is any grid block in the storage aquifer with
Si > 10−5. The denominator is the reservoir volume associated with the the areal footprint of the plume.
The areal footprint is determined by first identifying the plume in each layer. Here the plume is taken to
be all cells with Si > 10−5. The rectangle in the x-y plane that contains the plume, in all layers, is the areal
footprint. This is illustrated schematically for a two-layer system in Fig. 1. Here the blue circle represents
the plume in one layer, and the yellow circle represents the plume in the other layer. The red rectangle,
which encompasses both circles, defines the areal footprint. The footprint region Dfr is then the brick-shaped
domain formed by vertically projecting the areal footprint (red rectangle in Fig. 1) through the entire aquifer
in the z-direction. Quantities Vj and ϕj are the bulk volume and porosity for block j in the footprint region
Dfr. Since the optimization problem in Eq. 1 is defined as a minimization and we seek to maximize storage
efficiency, a negative sign is applied in the definition of f2.

Figure 1—Areal footprint of the CO2 plume in a two-layer system. Blue and yellow circles indicate the plume in the two
layers, and the red rectangle is the areal footprint. The footprint region is formed by vertically projecting the areal footprint.

Optimization Constraints
Constraints on the geometry of the well configuration, on the volume/mass of CO2 injected at each time
step, and on the maximum bottomhole pressure (BHP) of each injection well must be satisfied in the
optimizations. The treatments for these constraints are considered in turn.

The well geometric constraints considered in this study include minimum and maximum well length,
minimum interwell distance, and minimum well-to-boundary distance. These constraints depend only on
the well location variables ul, so they can be evaluated prior to performing flow simulation. The constraint
violations are measured in meters, and we assign a value of zero to the constraint if there is no violation.
We will now provide brief descriptions of these geometric constraints. Further details are provided by Zou
et al. (2022).

The minimum and maximum allowable well lengths are denoted  and . For each proposed well
ũi, the well length Li,wl is simply the Euclidean distance between the two endpoints. The minimum and
maximum well length constraints, denoted by  and , are computed as

(4a)
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(4b)

The minimum interwell distance constraint prevents wells from intersecting or being placed too close
to each other. We apply the segment-to-segment squared-distance algorithm (Schneider and Eberly, 2003)
to compute the shortest distance between each pair of wells. Once these pairwise distances are computed,
we can identify the minimum interwell distance between well i and all other wells, which we denote Li,iw.
Given a user-specified minimum interwell distance , the constraint violation  is given by

(5)

The minimum well-to-boundary (or well-to-perimeter) distance constraint forces wells to be placed
within a specified region. This constraint can be converted to a bound constraint for rectangular-shaped
domains (as are considered in this study), though in the general case of nonconvex domains it is nonlinear.
Here this constraint is computed using the signed-distance method. With this approach, the set of midpoints
on boundary-block faces is denoted as a. Each point in a is associated with its normal vector. For each well

ũi, we identify two points  and  within a that have the shortest distance to  and , respectively. Two

vectors,  and , are constructed. The dot product of each vector with the corresponding normal

vector (associated with  and ) is then computed. The signs of the dot products are assigned to 

and , respectively. The well-to-boundary distance Li,wp is taken to be the minimum of these two

quantities. The constraint violation  is then given by

(6)

where  is the specified minimum well-to-boundary distance.
We combine the geometric constraints into a total geometric constraint violation Q (in units of meters)

and a normalized total geometric constraint violation H (dimensionless). These are defined as follows. For
each well ũi, i = 1, …, Nw, we construct a constraint violation vector Ci = [Ci,1, …, Ci,j, …, Ci,Nc], where Nc =
4 is the number of geometric constraints considered in this study. The total constraint violations Q and H,
for a full candidate solution ul ∈ ℝ6Nw, are then defined as

(7)

(8)

In Eq. 7, ∈ = 10−4 m is an arbitrary small constant introduced to enable us to plot log Q. Hence, Q = 10−4

m indicates feasibility in terms of the the geometric constraints. The normalized total constraint violation H
will be used in the penalty function described later. In Eq. 8,  denotes the user-specified limit for each
constraint. The max(1, ) term is used as a normalizing factor to avoid division by zero.
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We now describe the constraints on CO2 injection and BHPs. The total injection rate target, specified in
terms of surface rate, is prescribed for each control period (here it is constant in time). For each injection
fraction in the set of control variables for well i, u˚ i = [ui,1, …, ui,t, …, ui,Nt], t = 1, …, Nt, we apply minimum
and maximum bound constraints of 0 and 1. This means a well could potentially inject anywhere from 0
to 100% of the total injection target during an injection period. We also impose a linear equality constraint
that forces the injection rate fractions from all wells, at each control period, to sum to 1, i.e., ,
for t = 1, …, Nt. This constraint is independent of the state variables x and can be evaluated prior to flow
simulation. The constraint violation is expressed as

(9)

This constraint can also be formulated such that only Nw − 1 variables need be determined in each control
period. The treatment applied here, however, is straightforward and easily implemented with the repair
procedure described later.

Various heuristics have been introduced for the maximum allowable injection pressure relative to the
initial pressure (Allen et al., 2017; Wang et al., 2013; Zhou et al., 2008). Following suggestions in these
studies, we limit the BHP for each well to a maximum of 150% of the initial pressure at the top of the storage
aquifer. With this specification, a well can switch from rate control to BHP control during the simulation
run. This can lead to field-wide CO2 injection that is below the target, which will result in Ct,wr > 0.

We also wish to ensure that all injected CO2 is retained within the storage aquifer rather than flowing into
the boundary region (these model regions will be defined later). To accomplish this, the constraint quantity
Caq is defined as

(10)

Here mtg is the total mass prescribed to be injected over the full injection period, min is the mass of injected
CO2 in the full system, and mout is the mass of CO2 that has flowed out of the storage aquifer. Satisfying this
constraint means we meet the total injection target and all CO2 is retained in the storage aquifer. Because this
constraint is dependent on the state variables x, it can only be evaluated after flow simulations are performed.
In this study, we set a feasibility threshold for Caq of 10−5, meaning Caq > 10−5 is considered infeasible.

Integrated Framework for Optimization and Constraint Handling
We begin this section with a description of the integrated optimization framework. Next, the constraint
handling methods applied to satisfy the various constraints are presented. The core optimization algorithms
(PSO and DE) are then discussed briefly. Finally, we describe the multifidelity optimization treatment
implemented in this work.

Overview of Optimization Framework.   An overview of the integrated framework is shown in Fig. 2. This
is similar to the workflow described by Zou et al. (2022), though there are some differences due to the
appearance of additional constraints. During initialization, algorithmic hyperparameters, initial solutions,
parameters for constraint treatments and termination criteria are specified. As noted earlier, some of the
constraints are independent of the state variables x, and these can be evaluated (and treated) prior to
performing any flow simulations. These constraints, which include , and Ct,wr, are
computed for each of the proposed solutions. If a solution contains constraint violations, we apply the repair
procedure (described later) to eliminate or reduce these violations.
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8 SPE-212228-MS

Figure 2—Overall optimization workflow.

Next, using the repaired solutions, we perform flow simulations and compute objective function values.
A penalty function is applied to penalize solutions that still contain some amount of infeasibility in the
geometric constraints. Additional treatment of Ct,wr is not required as this is a linear constraint that is always
satisfied after application of the repair procedure. The constraint Caq, which does depend on x, is then
evaluated. Because this is a nonlinear output constraint, a filter method is applied to achieve feasibility.
Finally, the repaired solutions are updated using the core optimization algorithm. The workflow proceeds
until a termination criterion is satisfied.

Constraint Handling.   The repair procedure applied to treat geometric constraints was introduced by Volkov
and Bellout (2018) and was later applied in a derivative-free optimization framework by Zou et al. (2022).
The repair entails the solution of a bi-objective optimization problem where the goal is to find a ‘repaired’
version ur of the original solution u (proposed by the core optimizer) that minimizes both the total geometric
constraint violation and the distance between the repaired and original solutions. Sequential quadratic
programming (SQP) is applied for this optimization, with each constraint treated independently. Even after
repair, the well configuration may still contain a degree of constraint violation, since the allowable distance
from the original solution is limited. An additional penalty is thus applied to increase (for a minimization
problem) the objective function value. The penalized objective functions, denoted Y1 and Y2, for the two
objective functions considered in this study (f1 and f2 in Eqs. 2 and 3) are computed as:

(11a)

(11b)

Here ζ represents a penalty parameter that varies depending on the magnitude of H. Please refer to Zou
et al. (2022) for the specific parameter values and more details on the overall repair and penalty treatments.

The well rate constraint is also treated in the repair procedure. In this case we minimize the quantity
Ct,wr (Eq. 9). Unlike the nonlinear geometric constraints, this is a linear equality constraint that is satisfied
by SQP in a single projection. Hence, an additional penalty function is not needed for this constraint. The
nonlinear output constraint Caq (Eq. 10) is treated after objective function evaluation using the filter method
described by Isebor et al. (2014). In the filter method, the constraint violation Caq is regarded as an objective
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SPE-212228-MS 9

to minimize along with the objective function f1 or f2. If Caq > 10−5, minimizing Caq takes precedence over
minimizing f1 or f2.

Core Optimization Algorithms.   We now describe the two derivative-free core optimization algorithms,
particle swarm optimization (PSO) and differential evolution (DE), applied in this study. In PSO, introduced
by Kennedy and Eberhart (1995), each solution vector u ∈> ℝn (n = 6Nw + Nw × Nt) is treated as a particle
(individual) in a swarm (population) containing N solutions. At each PSO iteration k, the N solutions ( ,
i = 1, …, N) are updated through application of

(12a)

(12b)

Here  is a velocity vector composed of so-called inertial, cognitive and social velocity
components. The inertial term, , involves the velocity at the previous iteration; this term acts to maintain

some continuity in the search. The cognitive term, , moves the particle toward the best

location it has found thus far in the search . The social term, , attracts the solution

to the location of the best particle in the overall swarm or in its more limited ‘neighborhood’ .
Stochasticity is introduced through D1 and D2, which are diagonal matrices containing uniformly distributed
random values sampled from [0, 1] at each iteration.

The hyperparameters ω, c1, and c2 can be tuned to enhance PSO performance. Zou et al. (2022) conducted
a detailed assessment to determine the best-performing set of hyperparameters. Consistent with their results,
here we specify ω = 0.721, c1 = 1.193, and c2 = 1.193. In addition, a global topology, where each particle
is connected to all particles at each iteration, is used.

DE, introduced by Storn and Price (1997), is also a population-based derivative-free optimization method
that shares some similarities with genetic algorithms. Each solution , i = 1, …, N, is updated to  by
applying so-called mutation, crossover, and selection operations. During mutation, a ‘mutant’  is generated
for each solution  through application of

(13)

where  is the global best solution found thus far in the optimization, wm ∈ [0, 2] is the specified mutation
factor, and  and  are two different solutions randomly selected from the currently population. A trial

solution  is then generated by accepting decision variables from either the solution  or the mutant 
via crossover. In binomial crossover (used here), a random value rj ∈ (0, 1) is generated and compared with

a constant crossover factor cf ∈ (0, 1) at the location of each decision variable. If rj ≤ cf,  inherits the
associated decision variable from , and it inherits from  if rj > cf. Finally, the objective function value

for the trial solution  is evaluated and compared with the original solution . The updated solution 
is taken to be the solution with the smaller objective function value (for a minimization problem).

DE also contains hyperparameters that impact algorithm performance. Here we use the best-performing
DE hyperparameters identified by Zou et al. (2022). The specific settings are wm = 0.5 and cf = 0.5. In
addition, consistent with the earlier study, binomial crossover (rather than exponential crossover) is applied.

Multifidelity Optimization.   Detailed (fine-scale) flow effects can impact the objective function values
computed in the optimizations. The use of highly resolved models in all optimization iterations would,
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10 SPE-212228-MS

however, lead to excessive computational costs. In this work we therefore introduce a multifidelity
optimization treatment, which we now describe.

Our multifidelity approach involves three levels of grid resolution. Details of the gridding at each
level are provided in the next section. The coarsest resolution (referred to as level 1) is used at the start
of the optimization run. Because the optimization algorithms applied here are stochastic, three separate
runs are performed, using different randomly generated swarms/populations. The level 1 optimizations are
terminated based on a percent improvement criterion, where we ‘look back’ a specific number of iterations
(20 in this study) and terminate the run if the percent improvement in the objective function is below 1%.
Next, optimization is performed using the level 2 grid, which is a 2 × 2 × 2 refinement of the level 1 grid.
Only one level 2 run is performed. The initial swarm/population is comprised of the best solutions, from
all three runs, found at the end of the level 1 optimizations (thus the swarm is diversified at this stage).
The same termination criterion is again applied (less than 1% improvement over 20 iterations). The level 3
optimization involves runs performed on a grid constructed through a 3 × 3 × 3 refinement of the level 1 grid.
The initial swarm/population at level 3 is simply the swarm/population at the end of the level 2 optimization.
The level 3 optimization is terminated when a 1% improvement is not achieved over 10 iterations.

In the multifidelity treatment applied in this work, the permeability field is defined on the level 1 scale.
Finer-scale heterogeneity is not introduced at levels 2 and 3. This means that permeability is uniform over
2 × 2 × 2 ‘patches’ at level 2, and over 3 × 3 × 3 patches at level 3. It would be straightforward to define the
permeability field at the finest (level 3) scale and then upscale it to levels 1 and 2, as was done by Aliyev
and Durlofsky (2017), though this approach is not considered here. In future work, it will be of interest to
use upscaled multiphase flow functions (Mishra et al., 2020; Rabinovich et al., 2015) in this multifidelity
procedure.

Aquifer Model and Base-case Setup
The aquifer model used in this study is a variant of that considered in previous investigations (Cameron
and Durlofsky, 2012; Sun and Durlofsky, 2019). The full model, shown in Fig. 3(a), is 229 km × 229 km
× 242 m, and the grid dimensions are 43 × 43 × 11. The central region, shown in Fig. 3(c) and referred
to as the storage aquifer, is of dimensions 11.2 km×11.2 km×242 m. This portion of the model, at level
1, is represented on a 35 × 35 × 11 uniform grid. The larger outer area surrounding the storage aquifer,
which is modeled with a nonuniform grid, enables pressure dissipation. This region is homogeneous, with
a permeability of 60.3 mD and a porosity of 0.2.

Figure 3—Overall reservoir models and log-permeability of the storage aquifer (adapted from Sun and Durlofsky (2019)).

In this study, we replace the outer region in Fig. 3(a) with a single layer of grid blocks of the same size
as the aquifer blocks. A pore-volume multiplier is applied such that these blocks have the same total pore
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SPE-212228-MS 11

volume as the full outer region in the original model. The resulting model, which represents the level 1
model used in this study, is shown in Fig. 3(b). A comparison of simulation results using the models in Fig.
3(a) and (b) will be presented later.

The storage aquifer shown in Fig. 3(c) is heterogeneous. The mean and standard deviation of log-
permeability are 4.03 and 0.99, respectively. Permeability is a diagonal tensor with ky = kx and kz = 0.1kx (kx,
ky and kz are permeability components in the coordinate directions). Porosity is correlated with permeability
and is, on average, 0.2. The depth of the reservoir is 1524 m, which results in a pressure of 155 bar at the
top of the model. The reservoir temperature is 55.2 °C. These conditions ensure that CO2 is supercritical
with a density of approximately 666 kg/m3. The model is initially saturated with brine (10,000 ppm NaCl).

In the simulations, we include the effects of relative permeability hysteresis (using the model in Cameron
and Durlofsky (2012)), as shown in Fig. 4(a). Heterogeneous capillary pressure curves, which depend on
porosity and permeability, are also used (the specific model is that applied in Sun and Durlofsky (2019)).
The capillary pressure curve constructed with the Brooks-Corey model for a porosity of 0.2 and permeability
of 29 mD is shown in Fig. 4(b). The mutual solubility of CO2 and the aqueous phase, as well as salt
precipitation, are included. The model does not include capillary pressure hysteresis, molecular diffusion,
or mineral trapping.

Figure 4—CO2–brine two-phase flow functions.

The total field injection target is 4 megatonnes CO2 per year for 30 years. The simulations continue for an
additional 170 years, so the total simulation time frame is 200 years. All simulations are conducted using the
CO2STORE option in Eclipse (Schlumberger, 2014). The optimizations are performed within the Stanford
Smart Fields Unified Optimization Framework.

It is useful to define a base-case scenario for the model described above. This setup, shown in Fig. 5(a),
involves four horizontal wells arranged in a square pattern in layer 9 of the model (layer 11 is the bottom
layer). To meet the yearly injection target of 4 megatonnes CO2, each well is specified to inject at a constant
surface rate of 1.467 × 106 m3/day for 30 years (this is based on a CO2 density of 1.868 kg/m3 at surface
conditions). In the optimization runs, we will consider variable rates in each of the injectors over five control
periods, with each period lasting six years. The injection rates are expressed in terms of the injection fraction
for each well in each period, as shown in Fig. 5(b). Finally, as discussed earlier, BHPs are limited to 150%
of the initial aquifer pressure (which is 155 bar at 1524 m). We thus impose a maximum injection BHP of
233 bar for each well.
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12 SPE-212228-MS

Figure 5—Well locations and settings for the base-case scenario.

Grid Refinement and Sensitivity Analysis
The model shown in the previous section is too coarse to resolve detailed flow effects. As discussed earlier,
we apply a multifidelity treatment to (partially) address this issue. The storage aquifer in the level 1 grid
contains 35×35×11 cells. The level 2 grid entails a 2×2×2 refinement (70×70×22 storage aquifer cells), and
the level 3 grid a 3 × 3 × 3 refinement (105 × 105 × 33 storage aquifer cells). The top layers of the storage
aquifer models for these three grid levels are shown in Fig. 6. Prior to simulation, a conforming outer region,
as depicted in Fig. 3(b), is added to the model. It is evident in Fig. 6 that permeability refinement is not
introduced as we proceed through the levels of grid refinement, as discussed earlier.

Figure 6—Grid resolution levels considered for the storage aquifer in multifidelity
optimization. Outer region not shown. Permeability field is defined on the level 1 grid.

We now assess results for both objective functions on the three grid levels. The well positions on the
level 2 and level 3 grids are adjusted to correspond to those on the level 1 grid. Simulations with the base-
case setup are performed both for ‘full’ models with nonuniform gridding in the outer region (as shown in
Fig. 3(a)) and for models with a single ring of cells and pore-volume multipliers (as shown in Fig. 3(b)).
We confirmed that the specified (target) mass of CO2 was injected over the 30-year injection period in all
cases. Results for mobile CO2 fraction as a function of time are presented in Fig. 7. Our first observation is
that the pore-volume multiplier results (dashed curves with circles, labeled with ‘PVMULT’) agree closely
with the corresponding cases simulated with nonuniform outer-boundary grids (solid curves, labeled with
‘nonuniform’). This agreement is observed on all three grid levels. Furthermore, the pressure increases by
only a very small amount, about 0.6 bar, in the single ring of boundary cells (with pore-volume multipliers)
over the simulation time frame. These observations indicate that we can use a single ring of cells and pore-
volume multipliers rather than nonuniform grids that extend out a great distance. This is a useful finding,
as the pore-volume multiplier approach leads to fewer overall cells and thus faster simulation runs.
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SPE-212228-MS 13

Figure 7—Impact of grid resolution and outer-region treatment on results for mobile CO2

fraction (base-case setup). Gray dashed line indicates the end of the injection period.

The results in Fig. 7 do display some variation with grid level, as would be expected. The variation
between levels 1 and 2 is larger than that between levels 2 and 3, suggesting that convergence under grid
refinement is occurring (though we do not claim the converged solution has been achieved). The end-time
mobile CO2 fraction for the level 1 (PVMULT) run is 0.245, while for level 2 it is 0.278 and for level 3
it is 0.283. Thus we see that, although there is some error, the level 1 results are still reasonable and thus
appropriate for use in early stages of the optimization.

The impact of grid level on the storage efficiency objective is now considered. These simulations are
performed using the pore-volume multiplier approach. Results are presented in Fig. 8, where we show CO2

saturation for the three levels in the top layer of the model (first row) and full 3D CO2 plumes (second
row). Although the total CO2 injected is the same at all levels, substantial differences in plume extent and
CO2 saturation are evident between the level 1 and level 2 results. Differences also exist between the level
2 and level 3 saturation fields, but they are less than those between the level 1 and level 2 results. This
is consistent with our observations for the first objective. In terms of objective function values (computed
through application of Eq. 3), storage efficiency is 0.044 at level 1, 0.037 at level 2, and 0.036 at level 3.

Figure 8—Impact of grid resolution on CO2 saturation fields (base-case setup).
Results shown for top layer of the model (first row) and for full 3D field (second row).
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14 SPE-212228-MS

Optimization Results
In this section, we present results for the minimization of mobile CO2 fraction and for the maximization
of storage efficiency. Both quantities are optimized at the end of simulation time frame (200 years). PSO
and DE optimizations, performed within the integrated workflow described in the previous section, are
considered. Four deviated/horizontal CO2 injection wells are specified in all cases. The well schedules are
divided into five control periods over the 30-year injection period. This results in 11 decision variable per
well, and a total of 44 decision variables for the full problem. Following Zou et al. (2022), we use population/
swarm size N = 44 for both PSO and DE in this study. Geometric constraints on the well configuration,
which are applied in all cases, are provided in Table 1. Because of the stochastic nature of the algorithms,
PSO and DE are typically run multiple times. Here we perform three optimization runs, though for the
multifidelity case this entails three runs only at the coarsest (level 1) grid resolution.

Table 1—Well geometric constraints applied in all cases

Maximum well length 1600 m

Minimum well length 640 m

Minimum interwell distance 960 m

Minimum well-to-boundary distance 960 m

In order to appropriately quantify computational demands in the multifidelity optimization runs, we
apply the concept of effective number of function evaluations. With this approach, which is based on a
computational complexity perspective, a single function evaluation corresponds to a fine-scale (level 3)
simulation. One effective function evaluation at level 1 entails 27 level 1 simulations (function evaluations),
since the level 1 grid contains a factor of 27 fewer grid blocks. Similarly, one effective function evaluation at
level 2 corresponds to eight level 2 simulations. Note that this treatment assumes linear scaling in simulation
time with the number of grid blocks in the model. Because the scalings observed for the cases considered
in this study are slightly super-linear, this approach underestimates the actual reduction in computation
resulting from the use of multifidelity optimization. The computational complexity approach is nonetheless
useful, however, because it avoids simulator and cluster-specific complications related to detailed simulator
settings, simulator overhead, i/o, memory, other demands on the computational cluster, etc. In terms of actual
timings, a single (typical) level 3 simulation run requires about 111 minutes on CentOS 7 compute nodes
(2 × E5-2660 Intel processor). With the computational complexity treatment, this corresponds to timings of
4 minutes for a level 1 run and 33 minutes for a level 2 run.

For the first objective function, we present comparisons between multifidelity optimization and
optimizations performed using only the fine-scale model (level 3 grid). The latter optimizations are run
three times with different (randomly generated) initial swarms/populations. In the case of multifidelity
optimization, three runs are performed at level 1, but only a single run is performed at levels 2 and 3, as
described earlier. The computational demands for the multifidelity optimizations are compared to those for
fine-scale optimization on the basis of the effective number of function evaluations.

Case 1: Minimization of Mobile CO2 Fraction
PSO results are shown in Fig. 9 for level 3 optimizations (all-fine-scale, denoted ‘AF’) and for multifidelity
optimization (‘MF’). The evolution of the penalized objective function (Y1 in Eq. 11(a)) with the effective
number of function evaluations, for the best solution in the swarm, is presented in Fig. 9(a). The AF
optimization runs are terminated after performing a number of function evaluations comparable to the
number of effective function evaluations used in the MF run (approximately 1760 in this case). In Fig.
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SPE-212228-MS 15

9(a), we observe jumps in the MF results when switching from one grid level to the next. These jumps
correspond to the errors associated with the coarser-grid simulations. It is evident, however, that most of
the improvement in the objective function value achieved at level 1 is applicable at level 2 (and similarly
for levels 2 and 3). We also see that, for the same computational effort, the MF treatment provides a lower
optimized mobile CO2 fraction (0.096) compared to the AF results, which range from 0.110 to 0.118. This
demonstrates the impact of the multifidelity treatment for this problem.

Figure 9—Evolution of PSO for the minimization of mobile CO2 fraction. Results are shown for
optimizations performed with all-fine-scale models (AF) and with multifidelity treatment (MF).

Fig. 9(b) and (c) show the median geometric constraint violations over the swarm, at each PSO iteration,
before (Q ̃o, where ‘o’ denotes original) and after (Q ̃r, where ‘r’ denotes repaired) the repair procedure has
been applied. In these plots, a value of 10−4 indicates feasibility. Reduction in Q ̃o is observed in Fig. 9(b) as
the PSO runs proceed for both the AF and MF optimizations. Median before-repair feasibility is, however,
only attained in the MF case. After-repair feasibility is achieved for both the AF and MF cases, as is apparent
in Fig. 9(c), which illustrates the effectiveness of the repair procedure. Note that all runs (AF and MF)
achieve feasibility by the end of the optimization.

Analogous optimization results using DE are presented in Fig. 10. In Fig. 10(a), we again observe
substantial benefit from using the multifidelity treatment. The MF solution provides an optimized mobile
CO2 fraction of 0.090 after 1662 effective function evaluations, whereas the best AF run provides an
optimized mobile CO2 fraction of 0.124 after a comparable number (1672) of effective function evaluations.
In addition, consistent with the PSO results, we observe faster reduction in before-repair constraint
violations in the MF case, though the repair procedure again provides feasible median solutions in all cases
(Fig. 10(b) and (c)).

Figure 10—Evolution of DE for the minimization of mobile CO2 fraction. Results are shown for
optimizations performed with all-fine-scale models (AF) and with multifidelity treatment (MF).
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16 SPE-212228-MS

Results from all runs, for both PSO and DE, are summarized in Table 2. The final optimized mobile
CO2 fractions are shown in the last column. From these values, it is evident that the multifidelity DE case
provides the lowest mobile CO2 fraction (0.090) at 200 years. We also see that the multifidelity PSO run
outperforms the AF runs.

Table 2—All-fine-scale (AF) and multifidelity (MF) optimization results for minimizing mobile CO2 fraction using PSO and DE

After 792
effective FEs Final result

PSO AF Run 1 0.141 0.113

PSO AF Run 2 0.156 0.118

PSO AF Run 3 0.156 0.110

PSO MF 0.110 0.096

DE AF Run 1 0.172 0.147

DE AF Run 2 0.170 0.138

DE AF Run 3 0.162 0.124

DE MF 0.101 0.090

The multifidelity runs, for both PSO and DE, switch from level 2 to level 3 slightly before 792 effective
function evaluations (FEs). This corresponds to 18 iterations for the all-fine-scale runs. In the second column
of Table 2, we provide optimization results at this stage for all runs (these values are all computed at
level 3). The multifidelity PSO and DE runs significantly outperform the all-fine-scale runs. In fact, the
multifidelity results at this stage provide comparable or better objective function values than are attained
by the all-fine-scale optimizations at the end of the runs. The main reason for the superior performance of
the multifidelity approach is that it enables many more PSO or DE iterations to be performed for a given
computational budget, thus allowing for more exploration of the search space than is achieved with all-fine-
scale optimization runs.

In terms of timings, based on the 111-minute run-time for a single level 3 simulation, the total serial
computation required to complete one DE all-fine-scale optimization run (1672 function evaluations) is
about 3093 hours. Thus, about 9280 hours are required for the three all-fine-scale runs. If each run is fully
parallelized (which means we have 44 cores and 44 simulator licenses available), the elapsed time for one
run would be about 70 hours (210 hours for three runs). The multifidelity treatment, as implemented here,
has the advantage of requiring three runs only at level 1. Thus the total serial time for the multifidelity
optimization (based on 657 combined effective function evaluations for the three level 1 runs, 512 at level
2, and 924 at level 3) is 2035 hours. The fully parallelized elapsed time is about 118 hours. Thus we achieve
speedup factors, relative to all-fine-scale optimization, of 4.6 (serial) and 1.8 (fully parallelized). These
values understate actual speedup because they do not account for super-linear scaling.

Optimal well configurations and well settings, and the corresponding CO2 saturation fields at 200 years,
are presented in Fig. 11. Results are shown for the best solution at each level of the DE multifidelity run.
In Fig. 11(a) – (c) the CO2 saturation profiles are shown for the top layer of the model, with the well
configuration projected onto this layer. The lengths of the wells cannot be determined from these images
unless the well is horizontal, though all wells are at least 1500 m in length (the maximum allowable well
length is 1600 m). The full 3D saturation fields are depicted in Fig. 11(d) – (f), and the well control
schedules appear in Fig. 11(g) – (i). Two of the wells are (slightly) deviated and the other two wells are
horizontal. All wells are placed near the bottom of the reservoir (layers 31-33). Comparing Fig. 11(a), (b)
and (c), it is evident that the best well configuration changes relatively little from level to level. The well
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SPE-212228-MS 17

controls, however, shift more significantly (Fig. 11(g), (h) and (i)), with the injection schedule becoming
more variable as we proceed from level 1 to level 3.

Figure 11—Top-layer and 3D CO2 fields at 200 years, and well controls for the
best solution at each level using multifidelity DE to minimize mobile CO2 fraction.

The optimal level 3 solution (corresponding to the third column of Fig. 11) entails wells that are separated
from one another and subject to highly variable injection rates. In fact, from Fig. 11(i), we see that only
two of the wells (INJ1 and INJ3) are active through the first two injection periods, and INJ4 does not start
injecting until the fourth period. Thus, all wells need not be drilled at the start of the storage operation. The
well configuration in Fig. 11(c) and the injection schedule in Fig. 11(i) provide distinct plumes that promote
dissolution and residual trapping.

In Fig. 12, we compare (multifidelity DE) optimization and base-case results for mobile, dissolved, and
residual CO2 fractions as a function of time (these results are at level 3). The end of the injection period is
indicated by the gray dashed line. Significant reduction in the mobile CO2 fraction is evident in the optimized
results over nearly all of the simulation time frame. At 200 years, the mobile CO2 fraction is 0.090 for the
optimized case versus 0.283 for the base-case.
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18 SPE-212228-MS

Figure 12—Comparison of mobile, dissolved, and residual CO2 fractions for multifidelity run and the base-case
setup. Gray dashed line indicates the end of the injection period. Objective is minimization of mobile CO2 fraction.

Next, we compare the results between multifidelity and all-fine-scale DE optimizations. These
comparisons appear in Fig. 13; the AF results are for the best DE AF run (run 3). We observe clear
differences between the two solutions in the CO2 fractions during the 30-year injection period. This is due
to the differences in the optimal well configurations and controls found in the two optimization runs. The
differences are relatively small at later times, though it is evident that the multifidelity run provides a lower
final value for mobile CO2 fraction than the best all-fine-scale run (0.090 versus 0.124).

Figure 13—Comparison of mobile, dissolved, and residual CO2 fractions for multifidelity run and (best) all-fine-scale
DE run. Gray dashed line indicates the end of the injection period. Objective is minimization of mobile CO2 fraction.

Finally, in Fig. 14, we show the injection-well BHPs during the injection period. These results are again
for the multifidelity DE solution. The red dashed line indicates the maximum allowable BHP (233 bar) for
each injector, and the black dashed line depicts the initial pressure at the top of the reservoir (155 bar). The
injector BHPs shown here reflect the injection rate fractions shown in Fig. 11(i). For example, the peaks
in INJ1 and INJ3 BHPs appear early in the run, while those for INJ2 and INJ4 occur later. Importantly,
the BHP constraints are satisfied by all wells at all times. At a few time steps, INJ2 and INJ4 switch from
surface rate control to BHP control, which acts to limit total CO2 injection. The filter treatment, however,
reduces this amount to less than the feasibility criterion of 10−5 for Caq (Eq. 10).
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SPE-212228-MS 19

Figure 14—Injection-well BHPs for multifidelity DE solution minimizing mobile CO2 fraction.

Case 2: Maximization of Storage Efficiency
We now present PSO and DE results for the second objective function – maximization of CO2 storage
efficiency. Because, for the previous case, we achieved better results with less overall computational effort
using the multifidelity treatment, we do not perform any all-fine-scale (AF) optimizations for this case. Figs.
15 and 16 display the multifidelity optimization results for PSO and DE, respectively. Comparing Figs.
15(a) and 16(a) with Figs. 9(a) and 10(a), we observe larger jumps between grid levels for this objective
function, consistent with our observations for the base-case. PSO and DE provide comparable final results,
with PSO giving an optimized storage efficiency of 0.074, and DE giving 0.073. These results represent a
factor-of-two improvement relative to the base-case value of 0.036.

Figure 15—Evolution of multifidelity PSO for the maximization of storage efficiency.

Figure 16—Evolution of multifidelity DE for the maximization of storage efficiency.

Geometric constraints for this objective function are more difficult to satisfy because storage efficiency
is improved by placing wells close together, which can trigger constraint violations. The median before-
repair geometric constraint violations are shown in Figs. 15(b) and 16(b). As expected, these constraint
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20 SPE-212228-MS

violations are larger, particularly for DE, than in the previous case (compare Figs. 16(b) and 10(b)). The
repair procedure is again effective in providing geometric feasibility, as is evident in Figs. 15(c) and 16(c).

Results for the best PSO solutions at the three grid levels are presented in Fig. 17. Fig. 17(a) – (c) show the
2D CO2 saturation profiles and well configurations projected onto the top layer, (d) – (f) display the plumes
in 3D, and (g) – (i) show the well controls. As was the case with the first objective function, the optimized
solutions entail both horizontal and deviated wells placed near the bottom of the formation. Compared to
the previous optimized configuration (Fig. 11(c)), the well configurations in this case (Fig. 17(c)) display
much tighter well spacings. This is of course consistent with the goal of maximizing storage efficiency.
In addition, although still quite variable, the well control settings for this case (Fig. 17(i)) correspond to
less extreme injection fraction values than in the first case (Fig. 11(i)). BHPs for the four injectors, for the
PSO solution, are presented in Fig. 18. It is apparent that the BHP constraints are satisfied at all times. In
addition, the overall field injection target is met.

Figure 17—Top-layer and 3D CO2 fields at 200 years, and well controls for the
best solution at each level using multifidelity PSO to maximize storage efficiency.
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SPE-212228-MS 21

Figure 18—Injection-well BHPs for multifidelity PSO solution maximizing storage efficiency.

Concluding Remarks
In this work, we developed a general framework for optimizing the locations and time-varying rates
of multiple horizontal/deviated CO2 injection wells. Two objective functions were considered – the
minimization of mobile CO2 fraction and the maximization of CO2 storage efficiency – along with
multiple realistic constraints. The latter include geometric constraints on the well configuration, injection-
rate constraints, and plume-location constraints. BHPs were also limited to a specified maximum. The
constraints were handled with a variety of treatments, which included a preprocessing repair procedure, a
filter method, and a penalty method. Two derivative-free core optimization algorithms, PSO and DE, were
applied. A multifidelity approach involving three levels of grid resolution was introduced.

PSO and DE multifidelity optimization results were compared with all-fine-scale optimizations for the
first objective function (minimization of mobile CO2 fraction). The multifidelity approach was shown to
be the method of choice with both optimizers, as it provided better optima, with less overall computation,
than the use of all-fine-scale simulations. Among all the optimization runs, multifidelity DE resulted in
the lowest mobile CO2 fraction (0.090), which represents a 68% improvement over the base-case result
(0.283). With all-fine-scale simulations, DE provided a mobile CO2 fraction of 0.124, which exceeds the
multifidelity DE result by 38%. The optimal configuration involved well-separated horizontal and deviated
wells placed towards the bottom of the storage aquifer. This design, along with a highly variable injection-
rate schedule, led to separated plumes and enhanced dissolution and residual trapping.

For the maximization of storage efficiency, results were generated using only the multifidelity treatment.
The optimized objective function values from PSO and DE were very similar (0.074 and 0.073,
respectively). These storage efficiencies are about twice the base-case value. For this objective function the
geometric constraints are more challenging to satisfy because storage efficiency increases when wells are
closely spaced. The repair procedure was nonetheless able to provide feasible well configurations, and all
other constraints were also satisfied. The optimized configuration and well settings in this case led to a single
‘merged’ plume that extended over much less of the aquifer than the plumes for the first objective function.

There are many areas that should be considered in future work. In this study, only horizontal and
deviated wells were optimized. Vertical wells, commonly considered in CO2 operations, did not appear
in our solutions because of the minimum-well-length constraint. By reducing this value, we could also
consider vertical wells. The level 2 and level 3 models used in the multifidelity approach were generated by
performing grid refinement on the level 1 model, without introducing finer-scale geological heterogeneity.
It will be of interest to define the geomodel on a very fine scale and then populate the geomodels at
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22 SPE-212228-MS

each level through application of proper upscaling procedures. The resolution at different levels, switching
criteria, and initialization of the swarm/population at the next level in multifidelity optimization should
also be further explored. The two objective functions considered in this study are somewhat conflicting
in nature. Thus, multiobjective optimization could be utilized to identify a set of Pareto-optimal solutions,
which would be useful for decision making. Drilling and operating costs could also be incorporated into the
optimizations. Geomechanical effects are often important, and these could be included in the simulations.
Finally, treatments for handling geological uncertainty will be required in practice and should be pursued.
These could entail optimizing over multiple geomodels (i.e., performing robust optimization) and applying
closed-loop procedures in which the geomodels are updated via history matching over the course of the
storage operation.
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