EVOLUTION OF PERMEABILITY AND MICROSTRUCTURE OF MUDSTONE CARBONATES DUE TO NUMERICAL SIMULATION OF CALCITE DISSOLUTION

Kevin J. Miller

Tiziana Vanorio (Stanford Rock Physics Laboratory)
Youngseuk Keehm (Kongju National University)

SCCS Annual Affiliates Meeting 2017
EOR & CO₂ sequestration

• CO₂ can be stored in low permeability reservoirs.
• Reaction with carbonic acid and calcite changes the microstructure.
• Permeability is dynamic.
• Potential for leakage.
• Useful to monitor changes in subsurface permeability.

(Anthonsen et al., 2009)
Seismic \rightarrow Porosity \rightarrow Permeability

- Seismic monitoring to obtain of the rock.
- Rock physics data to convert velocity to porosity.
- Geometric model to convert porosity to permeability.

(Vanorio et al., 2015; Geol. Soc. London)

(White, 2009; The Leading Edge)
• Many rock types adhere to a unique permeability-porosity relationship:

• Sandstone modeled as a piece-wise power law or Kozeny-Carman equation.
Tight carbonates exhibit 3 OM spread of permeability.

CO_2 injection lead to porosity-independent permeability evolution.

Stiff matrix, no compaction.

Completely contrary to conventional thinking.

No major changes in the microstructure before and after injection.

Vanorio et al. (2015; Geol. Soc. London)
• Tight carbonates exhibit 3 OM spread of permeability.
• CO₂ injection lead to porosity-independent permeability evolution.
• Stiff matrix, no compaction.
• Completely contrary to conventional thinking.
• No major changes in the microstructure before and after injection.

(Vanorio, 2015; Geophysics)
If not porosity, what are the attributes of the pore geometry that controls permeability evolution for tight carbonates and gives rise to porosity-independent permeability behavior exhibited by tight carbonates?
Digital rock physics (DRP)

- Image pore geometry of tight carbonate.
- Simulate fluid flow with LBM
- Erode geometry based simple dissolution rules
- Obtain permeability and pore attributes.
- Attempt to relate micro and macro.

- Porosity
- Specific surface area
- Tortuosity
- Hydraulic diameter

DIGITIZE ROCK -> PORE GEOMETRY -> MICRO-PROCESS -> ANALYSIS
Digitizing the carbonate rock

Tight micrite matrix

Pores

1 mm

2.65 mm
Simulation of laminar flow

- Simplest dissolution model we could think of.
- Erode calcite at a rate controlled by the local velocity and surface area, equivalent to solving:

\[
\rho \frac{dV_i}{dt} = -n_i \frac{v_i}{v_{\text{max}}} R_0
\]

\(R_0 \): Plummer et al. (1978)

- Compute geometric properties and permeability.
- Iterate with updated geometry.

For each boundary voxel \(i \),

\[
\rho \frac{dV_i}{dt} = -n_i \frac{v_i}{v_{\text{max}}} R_0
\]
Velocity distribution evolution

- Velocity magnitude heterogeneous over fluid path.
- Dissolution rules reinforce high-conductivity paths.
- Velocity becomes more homogenous over path.
Stage 1: Patchy Dissolution of narrow pore throats

Stage 2: Channelization Formation and dilation of channels
Permeability-porosity evolution

- Calculate permeability at every LBM computation.
- Sharp transition between Stage 1 and 2.

\[k = k_0 \left(\frac{\phi}{\phi_0} \right)^n \]
Comparison with experiment

- Compare simulation results with CO$_2$ injection experiments.
- Normalize porosity and permeability by initial value.

\[k = k_0 \left(\frac{\phi}{\phi_0} \right)^n \]
Connecting permeability with pore parameters
Connecting permeability with pore parameters

- Plug attributes into Kozeny-Carman equation.
- Underestimate the changes in permeability by orders-of-magnitude.
- Qualitative explanation:
 - KC good for microstructures with open pores.
 - KC sensitive to uniform changes.
- Dissolution can target critical porosity in a pore network, induce large change with minimal volumetric impact.
Effective pore geometry

- Fluid flow dominated by preferred fluid pathways.
- Try to isolate the changes in the permeability to the portion of porosity that actually contributes significantly to fluid flow.
- Keep pores whose flux is > 10% of the average flux.
Conclusions

- Dissolution seems to target the permeability-limiting narrow pores.
- Dissolution with high flow rate results in first widening of narrow pores, then formation of channels.
- Narrow pores constitute small % of total pore volume, so widening of those pores induces virtually porosity-independent permeability increase.
- Kozeny-Carman Equation does not capture the small changes in the pore geometry, induced by dissolution, that can give rise to large changes in the permeability.
- Not all of the pores contribute significantly to the permeability. There is a backbone porosity that dominates the fluid flow through the rock.
Acknowledgements

- Stanford Center for Carbon Storage
- NSF CAREER Award to Tiziana Vanorio