Idealized shale:
Pore volume measurements for standard references in theoretical modeling

RANDALL HOLMES
ERIK C. RUPP
JEN WILCOX
ENERGY RESOURCES ENGINEERING
SCCS, STANFORD UNIVERSITY
05/27/15

Road map

Introduction

Background

Methodology

- Standardizing shale sample preparation for low pressure sorption
- Idealized shale samples explained
- Isotherm measurements
- Pore volume analysis: Model selection and DFT parameters

Results

- Idealized shale trends
- Validation shale trends

Next steps

- Idealized kerogen
- Resolving pore shape

Questions
On the Nanoscale

- **DNA**: 2 nm, 2 × 10^{-7} cm
- **Soccer Ball**: 2 × 10^8 nm, 20 cm
- **Earth**: 12.7 × 10^{16} nm, 12.7 × 10^9 cm
Shale on the Nanoscale

Pores of interest are micropores and fine mesopores < 15 nm

Mesopores

Micropores

2 nm

50 nm

Macropores

Clay (Green River Illite) Kerogen

Images courtesy of Stanford Nanocharacterization Lab via Beibei Wang.

Stanford University
Adsorption/Desorption process

Lowell et al. (2006).

Pore Size Distributions

Idealized Shales

Validation Shales

Stanford University
Truncated Data

Cutoff for shales ~ 15 nm diameter corresponds to ~0.87 and ~0.88 relative pressure when using argon and nitrogen, respectively.

\[
\gamma = \gamma_0 \left(1 - \frac{T}{T_c} \right)^p = 12.6335
\]

\[
p = 1.281
\]

\[
T_c = 150.7 \text{ K}
\]

\[
\psi_0 = 38.07 \text{ dyn/cm}
\]

\[
\frac{T}{T_c} = 87.45/150.7 = 0.58 \text{ (same value from Quantachrome)}
\]

Cutoff for shales ~ 15 nm diameter corresponds to ~0.87 relative pressure

\[
r = \frac{2 \cdot \gamma \cdot V_m}{R \cdot T \cdot \ln \left(\frac{P}{P_0} \right)} = \frac{2 \cdot 12.6335 \left(\frac{\text{erg}}{\text{cm}^2} \right) + 28.7 \left(\frac{\text{cm}^3}{\text{mol}} \right)}{8.314E7 \left(\frac{\text{erg}}{\text{mol} \cdot \text{K}} \right) \cdot 87 \text{ K} \cdot \ln(0.873)} = 7.5448E - 7 \text{ cm} = 7.5 \text{ nm}
\]

\[
r_{max} = \frac{2 \cdot \gamma \cdot V_m}{R \cdot T \cdot \ln \left(\frac{P}{P_0} \right)} = \frac{2 \cdot 12.6335 \left(\frac{\text{erg}}{\text{cm}^2} \right) + 28.7 \left(\frac{\text{cm}^3}{\text{mol}} \right)}{8.314E7 \left(\frac{\text{erg}}{\text{mol} \cdot \text{K}} \right) \cdot 87 \text{ K} \cdot \ln(0.99)} = 9.975E - 6 \text{ cm} = 99.75 \text{ nm}
\]

Lambda equation values from Stansfield, 1958

\[V_m\] value obtained from Terry et al. 1969
Shale attributes and reservoir characterization properties not considered:

- Percent this pore volume represents relative to total porosity
- Permeability
- Wettability
- Multiphase flow
- Rock strength
- Reservoir stresses
- Faulting and orientation
- Etc…

Road map

Introduction

Background

Methodology
- Standardizing shale sample preparation for low pressure sorption
- Idealized shale samples explained
- Isotherm measurements
- Pore volume analysis: Model selection and DFT parameters

Results
- Idealized shale trends
- Validation shale trends

Next steps
- Idealized kerogen
- Resolving pore shape

Questions
Adsorption/Desorption process

Lowell et al. (2006).
Adsorption/Desorption process

Lowell et al. (2006).

Stanford University
Outgassing Effects

Argon isotherms on Barnett shale

Changes in Volume from Changes in Outgassing Temperature
Experimental - TGA

- Netzsch STA 449 F3 Jupiter Simultaneous Thermal Analyzer and Differential Scanning Calorimeter

- Performed in N₂ atmosphere
 - Constant flow rate of 80 mL/min
 - Sample temperature ramped at 10 °C/min up to 400 °C
 - Temperature lowered at 10 °C/min to 30 °C
 - Each sample 15-30 mg
 - Except for isolated kerogen (~3 mg)
TGA Results Graphical

TGA Tabular Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial Weight (mg)</th>
<th>Δwt% → 400 °C</th>
<th>Δwt% → 250 °C</th>
<th>Δwt% → 110 °C</th>
<th>Δwt% on cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnett 1</td>
<td>19.834</td>
<td>-0.24</td>
<td>-0.15</td>
<td>0</td>
<td>0.07</td>
</tr>
<tr>
<td>Barnett 2</td>
<td>15.327</td>
<td>-1.43</td>
<td>-0.94</td>
<td>-0.55</td>
<td>-0.1</td>
</tr>
<tr>
<td>Barnett 3</td>
<td>30.133</td>
<td>-1.29</td>
<td>-0.8</td>
<td>-0.47</td>
<td>-0.11</td>
</tr>
<tr>
<td>Barnett 3 (duplicate)</td>
<td>38.142</td>
<td>-1.34</td>
<td>-0.81</td>
<td>-0.45</td>
<td>-0.11</td>
</tr>
<tr>
<td>Eagle Ford 1</td>
<td>26.356</td>
<td>-0.5</td>
<td>-0.36</td>
<td>-0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>Eagle Ford 2</td>
<td>17.219</td>
<td>-1.13</td>
<td>-0.88</td>
<td>-0.63</td>
<td>0.05</td>
</tr>
<tr>
<td>Illite</td>
<td>17.061</td>
<td>-2.32</td>
<td>-1.83</td>
<td>-1.27</td>
<td>-0.02</td>
</tr>
<tr>
<td>Kerogen</td>
<td>3.618</td>
<td>-7.3</td>
<td>-4.26</td>
<td>-3.07</td>
<td>-0.48</td>
</tr>
</tbody>
</table>

Stanford University
Determination of activation energy and pre-exponential factor for individual compounds on release from kerogen by a laboratory heating experiment

MASAHIRO OBA, HAJIME MITA and AKIRA SHIMOYAMA*
Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
(Received August 30, 2001; Accepted November 27, 2001)

Table 2. Activation energies, pre-exponential factors and rate constants at 120°C of benzene, hexane, toluene, phenol, heptane, and indene on release from kerogen samples in Shingo sediments

<table>
<thead>
<tr>
<th>Me</th>
<th>Compounds</th>
<th>Kerogen</th>
<th>Activation energies (kcal/mol)</th>
<th>Pre-exponential factors (e^A)</th>
<th>Rate constants at 120°C (e^C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Benzene</td>
<td>93109</td>
<td>47.0</td>
<td>1.03 x 10^12</td>
<td>7.65 x 10^15</td>
</tr>
<tr>
<td></td>
<td>Hexane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heptane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Rate Constants at 250 °C Averaged Over Six Evolved Species (min/max for individual kerogens)

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Ave</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.384E-10</td>
<td>3.76E-08</td>
<td>7.67E-09</td>
<td>4.75E-09</td>
<td></td>
</tr>
</tbody>
</table>

Average Rate Constants Calculated at 250 °C
(averaged over five kerogens per compound)

<table>
<thead>
<tr>
<th>Evolved Species</th>
<th>Activation energies from Oba et al. (kcal/mol)</th>
<th>Pre-exponential factors (1/s)</th>
<th>Rate Constant at 120 °C from Oba et al.</th>
<th>Rate Constant Calculated at 250 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>49</td>
<td>2.46E+12</td>
<td>1.41 x 10–15</td>
<td>8.34E-09</td>
</tr>
<tr>
<td>Hexane</td>
<td>55.3</td>
<td>2.60E+14</td>
<td>4.69 x 10–17</td>
<td>2.06E-09</td>
</tr>
<tr>
<td>Toluene</td>
<td>50.5</td>
<td>6.83E+12</td>
<td>5.75 x 10–16</td>
<td>5.47E-09</td>
</tr>
<tr>
<td>Phenol</td>
<td>52.8</td>
<td>4.95E+13</td>
<td>2.19 x 10–16</td>
<td>4.34E-09</td>
</tr>
<tr>
<td>Heptane</td>
<td>54.6</td>
<td>2.21E+14</td>
<td>9.77 x 10–17</td>
<td>3.43E-09</td>
</tr>
<tr>
<td>Indene</td>
<td>46.7</td>
<td>4.90E+11</td>
<td>5.34 x 10–15</td>
<td>1.52E-08</td>
</tr>
</tbody>
</table>
Repeatable Isotherms Barnett Shale at 250 C

Stanford University
Barnett Repeats PSD

Barnett Cumulative Pore Volume and PSDs
Effects of temperature on clays

Interlayer cation loss?

Interlayer collapse?

Dehydroxilation? Most likely, no. (>450 C)
Four Components Mechanically Mixed

Kerogen to represent total organic carbon (TOC)

Illite to represent clay

Silicon dioxide (SiO$_2$) for quartz

Calcium carbonate (CaCO$_3$) as itself

Images courtesy of Stanford Nanocharacterization Lab via Beibei Wang.

Stanford University
Three Test Groups of Idealized Shales

<table>
<thead>
<tr>
<th>Illite (%)</th>
<th>Kerogen (%)</th>
<th>TOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0-12%</td>
<td>0-8%</td>
</tr>
<tr>
<td>30%</td>
<td>0-12%</td>
<td>0-8%</td>
</tr>
<tr>
<td>55%</td>
<td>0-12%</td>
<td>0-8%</td>
</tr>
<tr>
<td>Remaining</td>
<td>Remaining</td>
<td>Remaining</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Even Split</td>
<td>Even Split</td>
<td>Even Split</td>
</tr>
<tr>
<td>Quartz/Carbonate</td>
<td>Quartz/Carbonate</td>
<td>Quartz/Carbonate</td>
</tr>
</tbody>
</table>

Three Validation Groups

- **Barnett**
 - 6-39% Clay
 - 1-6% TOC
 - Depth: ~2600 m

- **Eagle Ford**
 - 6-22% Clay
 - 2-5% TOC
 - Depth: 3900 m

Baltic Sequence
- 39-72% Clay
- 0-5% TOC
- Depth: 1416-4409 m

Selected those Baltic samples with ~55% clay for comparison to idealized 55% group.
Methodology III

ISO THERM MEASUREMENTS

Quantachrome Autosorb iQ2
Sorption Isotherm Begets PSDs

Quenched Solid Density Functional Theory (QSDFT)

Kerogen N₂ Isotherm

Quenched Solid Density Functional Theory (QSDFT)

Silurian Kerogen

Validation Sample

Stanford University

Methodology IV

PORE VOLUME ANALYSIS:
MODEL SELECTION AND
DFT PARAMETERS
DFT parameters

Pore shape: Slit? Cylinder? Combination?
Basis for surface potential: Carbon? Silica?

Difficulties in Pore Analysis

- Exposure to high temperatures during outgas
 - Literature recommendation is 100 ° C
 - May not desorb species from micropore region

- Choice of adsorbate
 - \(\text{N}_2 \) @ 77K, \(\text{CO}_2 \) @ 273K, Ar @ 87 K

- How do you model the pore size distribution?
 - Traditional methods (BJH, DR/DA) rely on basic assumptions that may not be valid
 - Advanced DFT based methods also have basic assumptions that may not be valid
Pore Size Distribution Methods

- CO₂ – NLDFT, carbon equilibrium transition kernel at 273 K based on a slit-pore model
- N₂/Ar – QSDFT, carbon equilibrium transition kernel at 77/87 K based on a slit-pore model
Road map

Introduction
Background

Methodology:
- Standardizing shale sample preparation for low pressure sorption
- Idealized shale samples explained
- Isotherm measurements
- Pore volume analysis: Model selection and DFT parameters

Results
- Idealized shale trends
- Validation shale trends

Next steps
- Idealized kerogen
- Resolving pore shape

Conclusion

Stanford University

Road map

Introduction
Background

Methodology
- Standardizing shale sample preparation for low pressure sorption
- Idealized shale samples explained
- Isotherm measurements
- Pore volume analysis: Model selection and DFT parameters

Results
- Idealized shale trends
- Validation shale trends

Next steps
- Idealized kerogen
- Resolving pore shape

Questions

Stanford University
Results I

IDEALIZED SHALE TRENDS

Pore Volumes

Pore Volume vs TOC for pore diameters < 15nm

- $y = 0.003x + 0.0065$ $R^2 = 0.8438$
- $y = 0.0023x + 0.0048$ $R^2 = 0.8315$
- $y = 0.0015x + 0.0125$ $R^2 = 0.9836$

Stanford University
Results II

Validation Shale Trends

Pore Volumes

Pore Volume vs TOC for pore diameters < 15nm

y = 0.0014x + 0.0158
R² = 0.2328

y = 0.0015x + 0.0125
R² = 0.9836

Stanford University
Pore Volume vs % Clay

\[y = 0.0002x + 0.0064 \]
\[R^2 = 0.021 \]

Baltic ~55% Clay Group: Depth vs Pore Volume

\[y = -166613x + 5785.5 \]
\[R^2 = 0.8133 \]
Road map

Introduction

Background

Methodology
Standardizing shale sample preparation for low pressure sorption
Idealized shale samples explained
Isotherm measurements
Pore volume analysis: Model selection and DFT parameters

Results
Idealized shale trends
Validation shale trends

Next steps
Idealized kerogen
Resolving pore shape

Questions

Stanford University

Pore Volumes

Pore Volume vs TOC for pore diameters < 15nm

\[y = 0.0014x + 0.0158 \]
\[R^2 = 0.2328 \]

\[y = 0.0015x + 0.0125 \]
\[R^2 = 0.9836 \]

Stanford University
Next Steps

Better compositional proxies: This summer, we intend to use activated carbons and zeolites with known pore geometries and PSDs to simulate shales to provide the best possible benchmarkers

Finish 55% sequence

Create model to predict shale pore volume as function of %clay, %TOC and depth, and apply predictions to reservoir models

Run repeats

Monte Carlo simulations to substantiate pore geometry

Interlayer cation simulations

Questions?

Randall Holmes
Energy Resources Engineering
rtholmes@stanford.edu

Stanford University
Acknowledgements

- ConocoPhillips – Shale samples
- Chevron - Dr. Doug McCarty, Shale samples and data
- Weatherford Laboratories – XRD/Compositional information
- Quantachrome Instruments - Matthias Thommes, Katie Cychosz
- Clean Energy Conversions Lab: Prof. Jen Wilcox, Dr. Erik C. Rupp, Beibei Wang, Jiajun He
- Stack Research Group: Chris Lyons
- School of Earth Sciences Undergraduate Research (SESUR) Grant

Randall Holmes
Energy Resources Engineering
rtholmes@stanford.edu

Additional References

Randall Holmes
Energy Resources Engineering
rtholmes@stanford.edu