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2D‑to‑3D image translation 
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Image-based characterization offers a powerful approach to studying geological porous media at 
the nanoscale and images are critical to understanding reactive transport mechanisms in reservoirs 
relevant to energy and sustainability technologies such as carbon sequestration, subsurface hydrogen 
storage, and natural gas recovery. Nanoimaging presents a trade off, however, between higher-
contrast sample-destructive and lower-contrast sample-preserving imaging modalities. Furthermore, 
high-contrast imaging modalities often acquire only 2D images, while 3D volumes are needed to 
characterize fully a source rock sample. In this work, we present deep learning image translation 
models to predict high-contrast focused ion beam-scanning electron microscopy (FIB-SEM) image 
volumes from transmission X-ray microscopy (TXM) images when only 2D paired training data is 
available. We introduce a regularization method for improving 3D volume generation from 2D-to-2D 
deep learning image models and apply this approach to translate 3D TXM volumes to FIB-SEM fidelity. 
We then segment a predicted FIB-SEM volume into a flow simulation domain and calculate the sample 
apparent permeability using a lattice Boltzmann method (LBM) technique. Results show that our 
image translation approach produces simulation domains suitable for flow visualization and allows for 
accurate characterization of petrophysical properties from non-destructive imaging data.

The transition to a sustainable energy future requires a combination of greenhouse gas sequestration, long-term 
adoption of renewable sources of energy, and near-term fuel switching to cleaner available energy resources1. 
Approaches that could contribute to these goals include CO2 sequestration, subsurface H2 or compressed air 
storage, and natural gas recovery2–6. One important requirement for scalable and sustainable implementation 
of these technologies is more rapid and reliable characterization of porous media transport properties in order 
to identify viable candidate formations.

Image-based characterization—and nanoimaging in particular—combined with digital rock physics are criti-
cal to understanding geological porous media at the pore scale7–10. Non-destructive imaging modalities such as 
transmission X-ray microscopy (TXM), scanning transmission electron microscopy (STEM), and X-ray spec-
troscopy (XRS) allow for characterizing the petrophysical properties of a sample while preserving it for future 
experimentation11–16. On the other hand, destructive imaging modalities such as focused-ion beam scanning 
electron microscopy (FIB-SEM) obtain high-contrast/high-resolution images at the expense of destroying the 
sample17.

An emerging area of image-based porous media characterization is isoscale multimodal imaging, where two 
or more imaging modalities at the same resolution are acquired to characterize a single sample11,18. Multimodal 
imaging and image data translation is a promising approach to characterization that enables the advantages of 
two or more imaging modalities, namely sample-preservation and high-resolution19. In a multimodal imaging 
workflow such as that shown in Fig. 1, a sample is imaged using two or more imaging modalities at the same 
resolution, a model is trained to translate between modalities, and the synthesized images used to estimate 
petrophysical properties of the sample20–22. Multimodal image prediction or enhancement is common in medical 
imaging23–25, but this methodology has yet to gain prominence in source rock characterization. Indeed, little work 
exists on applying deep learning models to porous media images, with most work focusing on synthesizing26–28 
or segmenting images29 rather than translating images across modalities.

Image prediction using multimodal imaging involves elements of single image super-resolution (SISR) 
and image-to-image translation. SISR seeks to predict a high resolution image from a low resolution input. 
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Many models have been proposed for this problem, with the most successful being dictionary methods30–32 and 
deep learning-based methods33,34. Image-to-image translation meanwhile seeks to translate images between 
domains35. Deep learning models for image translation include neural style transfer algorithms36,37, paired image 
translation38, and unpaired image translation39. The most common deep learning models for these tasks are 
based on feed-forward convolutional neural networks (CNNs) and conditional generative adversarial networks 
(CGANs)38,40,41.

3D-to-3D image volume translation typically requires paired 3D training data, and consequently is only 
applicable in a limited number of contexts such as medical imaging42,43 where sufficient amounts of aligned 3D 
multimodal data is available. Multimodal imaging for source rock samples often contains a mixture of 2D surface 
imaging modalities, such as electron microscopy, and 3D volumetric imaging, such as CT-based modalities44. 
Consequently, a persistent challenge for multimodal image-based characterization of geologic samples is predict-
ing 3D volumes from non-destructive image data when only 2D training data is available. This problem remains 
relatively unexplored, and no work exists addressing volume reconstruction from microscopy data in the context 
of geological porous media characterization.

This work presents a method for predicting high-contrast geological porous media image volumes from 
low-contrast, sample-preserving input data using deep learning models trained on only 2D paired multimodal 
image data. We introduce a new method for regularizing training of deep learning image reconstruction models 
to improve 3D volume prediction from 2D training data, further develop quantitative metrics for evaluating 2D 
and 3D multimodal image assimilation models, and construct simulation domains from the translated volumes 
to evaluate flow properties of geologic samples from reconstructed image volumes. While presented in the context 
of geological media, the method is applicable to other materials with fine microstructure.

Results
Two‑dimensional image reconstruction.  We first examine predicting 2D FIB-SEM image patches 
from TXM image patches. Results for the 2D-to-2D image prediction models are summarized in Table 1 and 
example images shown in Fig. 2b. For unregularized models, we test several different configurations of network 
architectures, training objectives, and upsampling factors (for the SISR models). We also train the pix2pix with 
Wasserstein GAN (WGAN) loss and SRGAN 4x upsampling with vanilla GAN loss with the proposed Jacobian 

Figure 1.   Multimodal image characterization workflow. (a) Multimodal image acquisition for a Vaca Muerta 
shale sample. After initial µ-CT imaging (left), a region with minimal pyrite deposits is selected and milled to 
a 30 µ m diameter cylindrical plug. This is imaged to produce a TXM image volume (middle). The plug is then 
successively focused ion beam milled and SEM imaged to create FIB-SEM image slices (right). (b) FIB-SEM 
and TXM image slices are aligned and normalized to create a paired 2D image dataset. (c) Image translation 
models are trained to predict FIB-SEM images from TXM images. These models include a continuity loss term 
to improve 3D volume translation when only 2D images are available. (d) Image volumes are predicted using 
the trained model. The volumes are synthesized by passing x–y image slices through the network independently 
to create the sequence of predicted FIB-SEM images. (e) Predicted FIB-SEM volumes are segmented into a 
simulation domain and petrophysical properties evaluated using digital rock physics techniques. Software: 
Powerpoint www.​micro​soft.​com, Avizo www.​therm​ofish​wer.​com.

http://www.microsoft.com
http://www.thermofishwer.com
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regularization term to improve volume generation from 2D-to-2D models (Fig. 2a). These two models were cho-
sen because they showed the strongest performance on peak signal-to-noise ratio (PSNR), structural similarity 
index metric (SSIM), and structural texture similarity index metric (STSIM).

Across all metrics, both the image translation and super-resolution models offer improvement over the 
unprocessed TXM images. STSIM and low density region segmentation show the largest improvement, while 
the high density segmentation showing minimal improvement over the raw TXM images. The WGAN models 
tend to outperform their vanilla GAN counterparts and GAN-based models perform a bit more strongly than 
the feed forward models in terms of PSNR and SSIM. The strongest performing GAN models are the WGAN 
models, particularly the pix2pix WGAN and SRGAN 2x WGAN models. The z-regularization results show that 
a Jacobian regularization term does not significantly impact the 2D-to-2D image translation results except for 
the low-density region segmentation. A comparison of image patches for original and regularized models (Fig. 3) 
shows that the regularization results in predicted FIB-SEM images with sparser x and y gradients and less noise. 
Furthermore, the z-regularization term causes the models to synthesize fewer low-density regions, resulting in 
reduced performance for low-density region segmentation.

Table 1.   Paired image similarity results. Comparison of image reconstruction models for 2D-to-2D image 
translation. Metrics are calculated using 100 image patches sized 128× 128 pixels sampled from held-out test 
set images. A greater score is better for all metrics shown. The feedforward CNN and pix2pix model use a 
9-block ResNet for image translation37 and the SRCNN and SRGAN models use a 9-block super-resolution 
ResNet34. The pix2pix (WGAN) model performs the most strongly in terms of PSNR, SSIM, and high-
density region segmentation. The SRGAN 4x (Vanilla) model performs the most strongly in terms of STSIM 
(perceptual similarity) and second most strongly for low-density region segmentation. The z-regularization 
slightly reduces performance for all metrics except high-density region segmentation.

Model PSNR SSIM STSIM Low dens. High dens.

Baseline Models

No Model 13.59 0.22 0.70 0.06 0.20

Feedforward CNN 15.82 0.20 0.72 0.20 0.18

pix2pix (Vanilla) 15.93 0.17 0.81 0.16 0.19

pix2pix (WGAN) 16.57 0.25 0.65 0.13 0.21

SRCNN 4x 15.94 0.21 0.75 0.18 0.20

SRCNN 2x 15.70 0.21 0.71 0.17 0.17

SRGAN 4x (Vanilla) 15.72 0.15 0.82 0.18 0.19

SRGAN 4x (WGAN) 16.11 0.22 0.73 0.17 0.21

SRGAN 2x (Vanilla) 16.02 0.19 0.79 0.17 0.20

SRGAN 2x (WGAN) 16.49 0.25 0.64 0.12 0.21

z-regularization

pix2pix (WGAN) 16.19 0.25 0.61 0.12 0.23

SRGAN 4x (Vanilla) 15.94 0.17 0.80 0.16 0.20

Figure 2.   Image translation model. (a) Visualization of the Jacobian regularization approach proposed to 
improve volume prediction with 2D-to-2D models. z-direction gradients are assumed to be sparse and we 
encourage continuity in the input TXM pixels Tij by penalizing the training by the Jacobian of the output image 
with respect to the input. (b) SRGAN image-to-image deep learning model. The model is trained with a vanilla 
or Wasserstein GAN loss, L1 image similarity loss, and optionally the proposed Jacobian loss to encourage 
continuity between input TXM slices. Software: Powerpoint www.​micro​soft.​com.

http://www.microsoft.com
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Figure 3.   2D-to-2D image translation results. Each row contains the input TXM image patch and ground 
truth FIB-SEM image patch, and translated image patches for the pix2pix (WGAN) and SRGAN 4x (Vanilla) 
models both with and without the continuity loss term. The Jacobian loss term causes the translation models to 
synthesize fewer details in the images. Specifically, we observe that fewer low-density regions are synthesized by 
the regularized models. Software: Powerpoint www.​micro​soft.​com.

Figure 4.   Test set volume renderings. Image volume is a 1283 voxel volume from a part of the imaged TXM 
volume held out as a test set. Volumes are evaluated for the pix2pix (WGAN) and SRGAN 4x (Vanilla) models 
for the original model, model trained with z-regularization, and regularized model with median filter post-
processing using a 3× 1× 1 structuring element. The x–z and y–z cross sections show improved z-direction 
continuity for the regularized and post-processed images. Software: Powerpoint www.​micro​soft.​com, MATLAB 
www.​mathw​orks.​com.

http://www.microsoft.com
http://www.microsoft.com
http://www.mathworks.com
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Three‑dimensional volume prediction.  We next synthesize image volumes using the trained models. 
The volumes are generated by passing each x–y slice independently through the 2D translation network and 
stacking along the z-axis to form a synthesized volume. Figure 4 shows image volumes generated with the pix-
2pix (WGAN) and SRGAN 4x (Vanilla) models for the original models, regularized models, and regularized 
models post-processed with median filtering. As shown in the image volumes, the z-regularization improves 
z-direction continuity, and the median filtering reduces “jittering” between image slices in the z-direction. We 
also see that the regularized models contain fewer low density regions, but as shown in Fig. 5, the low density 
regions are more continuous between slices than for the original models.

We evaluate the quantitative similarity metrics for 3D image volume generation by synthesizing 5 1283 vol-
umes from the test set TXM volume slices and computing the metrics for the x–y direction (the image genera-
tion plane) and the x–z and y–z directions (orthogonal to the image generation plane). We compute four image 
descriptors for each image in the synthesized volumes and test set: the area A(X), perimeter P(X), and mean 
curvature χ(X) for the low-density regions, and the joint pixel value distribution p(Tij , Sij) . We then calculate 
the Kullback-Leibler divergence (KL divergence) between the synthesized and test set image descriptor distri-
butions. The distribution of these descriptors should be similar between the test set images and the synthesized 
images along all image planes. Therefore, a smaller value of KL divergence indicates better model performance.

Table 2 summarizes the results for the unpaired image prediction metrics. The results for the gray level co-
occurrence probability distribution show similar results regardless of the model used. The models with z-reg-
ularization show a significant improvement in the perimeter and Euler characteristic metrics. However, the 
area metric showed worse performance for the regularized models, likely because regularized models produce 
fewer low-density regions. Results also show that post-processing with a median filter produces worse results 
for the pix2pix (WGAN) model but improves the perimeter and Euler characteristic results for the SRGAN 4x 
(Vanilla) model.

Flow in reconstructed volumes.  To demonstrate the application of the presented volume generation 
approach for evaluating petrophysical properties from nondestructive image data, we simulate flow of meth-
ane through volumes generated using the SRGAN 4x (Vanilla) model with and without regularization. This 
workflow is shown in Fig. 5. Using a three-dimensional, nineteen-velocity (D3Q19) lattice Boltzmann method 
(LBM), described in the Supplementary Information (SI), we simulate flow of methane in the z-direction at 
a temperature of 370 K, inlet pressure of 0.8 MPa inlet pressure, a pressure drop of 0.8× 10−7 MPa, and a 
kinematic viscosity of 10−4 cm2

/s . The flow simulations use a second-order slip boundary condition45,46. This 

Figure 5.   Flow simulation domain generation. A TXM image volume is translated to a FIB-SEM volume using 
the original (top) and regularized (bottom) SRGAN 4X (Vanilla) model. The image cross-sections show the 
improved continuity in the generated FIB-SEM volume produced by the regularized model. The image volumes 
are then segmented into a lower density region using thresholding-based segmentation. This produces a 
simulation domain that includes kerogen and lower-density minerals where most flow in the volume is assumed 
to take place. A threshold value is chosen such that the produced lower-density regions form a connected set of 
voxels. Disconnected voxels are then discarded to create the final flow simulation domain. Software: Powerpoint 
www.​micro​soft.​com, MATLAB www.​mathw​orks.​com, Avizo www.​therm​ofish​er.​com.

http://www.microsoft.com
http://www.mathworks.com
http://www.thermofisher.com
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boundary treatment captures slip velocities in complex pore geometries accurately via the inclusion of local 
Knudsen numbers47. Results from the pressure computations are shown in Table  3 and visualizations of the 
pressure field and streamlines are shown in Fig. 6. We observe that the choice of model may substantially affect 
the morphology of the low density regions and therefore the Knudsen number and apparent permeability. The 
apparent permeability values for both models are reasonable for a shale sample at the rock fabric scale, showing 
that the proposed image processing method enables both flow visualization and accurate computation of flow 
properties from non-destructive image data.

Discussion
Both super-resolution and image translation models are shown to predict FIB-SEM image patches effectively 
from TXM input images. We also observed that for the GAN models, using the WGAN loss function tended 
to improve performance in terms of PSNR, SSIM, and STSIM, at the expense of synthesizing fewer low-density 
regions and reduced performance for low-density region segmentation. This presents a significant challenge 
when analyzing or visualizing flow through shale volumes, because most of the flow is assumed to take place in 
the kerogen and low-density mineral regions.

The z-regularization approach introduced is promising for improving 3D reconstruction. The image predic-
tion results show that the z-regularization term has a minimal effect on the 2D quantitative error metrics while 
improving performance for some 3D image similarity metrics. In particular, z-regularization improves the Euler 
characteristic results that correlate with flow properties in the porous medium. Therefore this regularization is 
promising for replicating 3D structures in flow simulation domains. While z-regularization is shown to carry 
many advantages for 3D volume reconstruction, there remains room for improving particularly the quantita-
tive performance of these models and applying this approach in related domains such as medical imaging. An 

Table 2.   Image similarity metrics for volume generation. Metric represents the KL divergence between the 
distribution of image features computed for the test set image patches and slices from each image plane for 
synthesized volumes. Lesser is better for all metrics shown. Statistics are computed over 5 total 1283 volumes. 
For the area and perimeter, the z regularization and post-processing decrease performance for the x–y plane 
and produce similar results for the orthogonal x–z and y–z planes. Both z-regularization and post-processing 
show a significant improvement for the Euler characteristic results.

Model

A(X) P(X) χ(X)

p(Tij , Sij)x/y x/z, y/z x/y x/z, y/z x/y x/z, y/z

Baseline models

No Model 3.82 7.67 8.47 8.42 5.37 1.31 8.44

Feedforward CNN 1.93 5.54 1.36 19.17 3.80 23.05 7.98

pix2pix (Vanilla) 4.32 7.59 2.07 8.15 2.34 23.04 8.06

pix2pix (WGAN) 6.42 9.55 7.60 2.87 3.16 22.31 8.20

SRCNN 4x 4.33 9.03 5.12 7.84 2.00 21.75 8.07

SRCNN 2x 2.80 12.46 6.28 22.47 5.08 22.82 9.00

SRGAN 4x (Vanilla) 6.85 9.48 2.63 3.91 3.30 22.76 8.36

SRGAN 4x (WGAN) 7.68 9.69 5.47 1.44 1.73 11.46 9.03

SRGAN 2x (Vanilla) 1.41 7.40 2.27 8.58 1.80 22.72 7.95

SRGAN 2x (WGAN) 6.83 12.98 9.64 2.35 4.59 13.58 8.29

z-regularization

pix2pix (WGAN) 7.65 14.02 10.33 3.34 4.38 16.67 8.89

SRGAN 4x (Vanilla) 9.08 9.99 3.54 1.13 2.30 8.41 8.56

 z -regularization + post-processing

pix2pix (WGAN) 9.29 16.02 12.78 4.28 4.04 7.24 –

SRGAN 4x (Vanilla) 10.88 12.86 5.05 0.72 1.94 5.32 –

Table 3.   Computed flow results. Flow through the generated domains is simulated using LBM simulation. 
Results show permeability values on the order of O (101 nd) to O (102 nd) , which is the expected order of 
magnitude for apparent permeability for a shale volume at the rock fabric scale. The permeability computations 
show that the proposed image translation approach is capable of producing realistic simulation domains for 
evaluating petrophysical properties from nondestructive image data.

Model Kn k (d) φ φconnected

SRGAN 4x – Original 0.100 4.10× 10
−7 20.7% 18.7%

SRGAN 4x – Regularized 0.0770 8.14× 10
−8 18.9% 17.4%
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additional significant drawback is that these models take much longer to train due to the extra backpropagation 
steps required to compute the Jacobian-vector products used in the regularization term.

The simulation results demonstrate the practical application of our models to visualize and characterize flow 
in a shale rock volume using only non-destructive imaging data. The choice of model, however, may impact the 
computed apparent permeability and flow paths in a given volume. LBM simulations predict slightly smaller 
apparent permeability and Knudsen numbers for the regularized model, likely due to the complex pore space 
connectivity in the computational domain. Removal of active cells and creating disconnected flow paths reduces 
the ease of flow through the domain, which manifests in simulations as a reduced overall velocity and a less 
permeable medium.

We assume here that the active cells do not contain organic matter, e.g. kerogen, and their entire volume is 
available to flow. Although the computed apparent permeabilities are reasonable for a shale sample at the rock 
fabric-scale, the results may represent an upper bound as a result of this assumption. In future work, we will 
incorporate the effects of organic content and low permeability regions in the simulation models. The approach 
presented here could be used to reconstruct low-density regions at the O (101 nm) scale, then a generated pore 
structure obtained from high-resolution images (e.g. transmission electron microscopy images15) super-imposed 
on the low-density regions to obtain a simulation domain at the O (100 nm) scale. Similar approaches have been 
applied to other multiscale source rocks48, and presents a promising future direction for nondestructive image-
based characterization of geological porous media.

Methods
Multimodal shale image dataset.  The dataset consists of paired TXM and FIB-SEM images and is 
described in detail elsewhere19. The TXM images were acquired at beamline 6-2c of the SLAC National Accel-
erator Laboratory (SLAC) using X-rays at 8 keV. The TXM projections were reconstructed with TXM-Wizard49 
to produce an image volume of isotropic resolution of 31.2 nm/px. The FIB-SEM images were acquired on a FEI 
XL 835 DualBeam FIB/SEM instrument that milled and collected cross-sectional images perpendicular to the 
main axis of the cylinder. Instrument energy was 4kV, and the resolution was 33.6 nm/px in the x–y plane and 
variable z direction from 30 up to 50 nm. The TXM images were rescaled to be identical to FIB-SEM pixel resolu-
tion and aligned to achieve a paired image dataset. The final dataset contains 149 aligned 2D TXM and FIB-SEM 
grayscale image slices and a 3D TXM image volume consisting of 419 image slices. In both modalities, darker 
areas denote low density material or features that include: fractures, pores, organic matter and kerogen. Lighter 
areas denote high density minerals such as carbonates, silicates, barite, and pyrite.

Figure 6.   Comparison of pressure fields and flow streamlines in the original volume and in post-processed 
volumes created with a regularized model. The different models produce substantially different results in flow 
paths and pressure fields. The original model has more active cells in the simulation domain and therefore 
produces more flow streamlines. The streamlines for the regularized model, however, have greater continuity in 
the z direction. Software: Powerpoint www.​micro​soft.​com, MATLAB www.​mathw​orks.​com.

http://www.microsoft.com
http://www.mathworks.com
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Image prediction models.  We use image translation37–39 and SISR33,34 models to predict FIB-SEM images 
from TXM images. These models are divided into two main families referred to as feedforward CNNs and 
CGANs. Feedforward CNNs map the input image Iin to the output image Iout using a CNN G(Iin) = Îout . These 
models are trained according to the objective:

where Ti is the input TXM image and Si is the ground truth FIB-SEM image. We train using L1 loss because this 
has been shown to produce sharper images than L2 loss38. This model is effectively a nonlinear regression model 
where the CNN models the mapping between the input data and response values. The architecture for the neural 
network G(·) can take many forms. In the feedforward CNN model, we use a 9-block ResNet architecture37. In 
the SRCNN model, the Ti image is downsampled by 2x or 4x and G(·) is the SR-ResNet architecture34.

We also use the pix2pix38,39 and SRGAN34 CGAN models. These models consist of a generator network G(·) 
that predicts the FIB-SEM image and a discriminator network D(·) that evaluates the quality of an output image 
or pair of input/output images as being real or synthetic. These models are trained according to the objective as

We experiment with the vanilla GAN loss40 as

and the Wasserstein GAN (WGAN) loss with gradient penalty50,51 as

All models are implemented in Pytorch52, trained using a framework based on code for the pix2pix and 
CycleGAN38,39 models, optimized using the Adam optimizer53, and trained for 75 epochs total with a batch size 
of 10,000 randomly sampled 128× 128 image patches. We split the dataset of 149 paired image slices as 101 
training, 12 validation, and 36 test slices. The large test set was chosen to ensure that the 36 test set 2D slices 
spanned 1283 voxel subvolumes of the 3D TXM volume. Image patches for training and testing are chosen to 
contain at least 75% non-zero pixels and 95% non-artifact pixels. We use a learning rate of 2× 10−4 for the first 
50 epochs and anneal the learning rate by factor of 10 for the remaining epochs, as this was found to produce 
stable training and to train all models to convergence. �GP = 10 is used for all WGAN models per results from 
previous work on WGANs51.

z‑regularization approach.  We propose to reconstruct 3D image volumes with 2D-to-2D image models 
by enforcing continuity between input image slices, and thereby improve continuity in the z-direction of the 
predicted image volume. Our approach draws inspiration from existing work on robust learning54. Robust learn-
ing seeks to reduce the sensitivity of the class logits to the input data of the network; in our approach, we seek to 
reduce the sensitivity of the generator network G(·) to perturbations in the input image.

Our approach assumes that ∇zS is sparse for any SEM image S. Therefore, we enforce continuity in the pre-
dicted image volumes by regularizing with ||∇zS||1 . This term, however, is not easily computed. For Ŝ = G(T) , 
where Ŝ is the predicted SEM image and T is the input nano-CT image, we observe that

The squared Frobenius norm of the Jacobian can be computed efficiently. During training, we add this term to 
the original objective function to train a regularized model as

Paired image similarity metrics.  We evaluate paired image similarity using four similarity metrics: peak 
signal to noise ratio (PSNR), structural similarity index metric (SSIM), structural texture similarity index metric 
(STSIM) and a segmentation-based similarity metric.

PSNR: measures the similarity between images in decibels (dB) and is proportional to the inverse of mean-
squared error (MSE). For images with pixel values normalized to have Iij ∈ [0, 1] , PSNR is computed as

SSIM: measures the structural similarity between images. SSIM is based on the similarity of spatial statistics of 
the image and is calculated as

G∗
= argmin

G
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C1 , C2 , and C3 are small smoothing factors, µX and σX are respectively the mean and standard deviation of the 
pixel values in image patch X, and usually α = β = γ = 1.

STSIM: measures textural similarity between images and is based in part on SSIM55. STSIM is designed to 
measure perceptual similarity between images and is computed as

where ρX computes the correlation coefficient of the image pixels in image X with offset k and ℓ in the x and y 
directions, respectively. The additional terms have been shown55 to improve image retrieval by measuring per-
ceptual similarities rather than structural.

Segmentation-based Image Similarity: similar inputs should produce FIB-SEM images that are segmentable 
into the same rock phases19. Hence, we evaluate the outputs of the GAN model by segmenting the outputs and 
comparing this to the segmentation of the ground truth image38. Let Segk(·) be the segmentation classifier for 
class k that maps input image I to a binary mask of the pixels selected for class k. We compute the image similarity 
metric as the Dice score of the segmentation as

where ε is a small smoothing factor to account for empty classes. Here we segment the images into five regions: 
background, low density, medium density, high density, and surface charging artifacts. The classifier is imple-
mented in Ilastik56 and uses a random forest classifier to segment images based on pre-computed image features.

Unpaired image similarity metrics.  The lack of ground truth volumetric data precludes evaluation syn-
thetized image volumes using paired image metrics. We propose to evaluate the 3D reconstruction by measuring 
the similarity between the distribution of structural features for generated and ground truth images. We com-
pute this metric by using a function that maps an image I (either single modality or paired multimodal image) 
to a scalar value, then compute the Kullback-Leibler Divergence (KL divergence) between the distribution for 
synthetic images q(f (Î)) and ground truth images p(f (Igt)) . KL divergence is computed as

KL divergence takes values on the range [0,+∞) , so a smaller value indicates a closer match between the prob-
ability distributions q(x) and p(x).

We compute this metric for features in the x–y plane (image generation plan) and the x–z and y–z planes 
(orthogonal to the image generation plane). This method assumes that structural features in porous media at 
the nanoscale are approximately isotropic and therefore the distribution of structural features in all image planes 
should match the distribution from ground truth test set images. We compute this metric for Minkowski func-
tionals and the pixel value joint distribution.

Minkowski functionals distributions: Minkowski functionals measure topological features of images and 
provide structural descriptors of a solid volume and are a common metric for characterizing porous materials57. 
In two dimensions, there are three Minkowski functionals

where κ(x) = 1
R(x) is the inverse of the principal radius. We measure structural similarity of the predicted FIB-

SEM images by computing the Minkowski functionals58 for the low-density regions segmented with the Ilastik 
classifier used for the paired similarity metrics.

l(X,Y) =
2µXµY + C1

µ2
x + µ2

y + C1

c(X,Y) =
2σXσY + C2

σ
2
X + σ

2
Y + C2

s(X,Y) =
σXY + C3

σXσY + C3

SSIM(Igt, Î) = l(Igt, Î)αc(Igt, Î)β s(Igt, Î)γ

ρ(X; k, ℓ) =
E[(Xi,j − µX)(Xi+k,j+ℓ − µX)]

σ
2
X

r(X,Y;m, n) = 1− 0.5|ρ(X;m, n)− ρY (Y; n,m)|

STSIM(Igt, Î) = l(Igt, Î)
1
4 c(Igt, Î)

1
4 r(Igt, Î; 0, 1)

1
4 r(Igt, Î; 1, 0)

1
4

Seg. sim.(Igt, Î) =
2|Segk(I

gt
) ∩ Segk(Î)| + ε

|Segk(Igt)| + |Segk(Î)| + ε

KL div. =
∑

x∈X

p(x) log
p(x)

q(x)

Area: A(X) =

∫

X

dx

Perimeter: P(X) =
1

2

∫

∂X

dx

Euler - Poincare characteristic: χ(X) =
1

2π

∫

∂X

κ(x)dx
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Pixel value joint distribution: we form the joint histogram between TXM and FIB-SEM images and normal-
ize to create a joint probability distribution of pixel values p(Tij , Sij) , then compute the KL divergence between 
the pixel value distributions for real and synthetic images.

Computation of petrophysical properties.  We estimate petrophysical properties of source rocks by 
processing predicted FIB-SEM image volumes into simulation domains then applying digital rock physics tech-
niques to simulate flow through the rock volume. The active cells for the simulation domain are the segmented 
lower density voxels. We identify and remove disconnected active cells to improve the stability and convergence 
behavior of the numerical simulations. Using results from LBM flow simulations, we calculate apparent gas 
permeability as47

where µ is the gas dynamic viscosity, L is the domain length along the main direction of flow, q̄o is the average 
fluid velocity at the outlet, and pi and po are the inlet and outlet pressures, respectively. A shortcoming of this 
model, with respect to the permeability values, is the underlying assumption that the simulation domain is open 
pore space. In reality, the low-density regions are mixes of kerogen and pore space. Therefore, this approach 
provides an upper bound on the permeability rather than an exact number. Nevertheless, the models allow us to 
visualize possible flow paths through the sample volume and evaluate the impact of different volume reconstruc-
tion methods on the computed petrophysical properties.
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