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Abstract Uncertainty quantification is typically accom-
plished by simulating multiple geological realizations,
which can be very expensive computationally if the flow
process is complicated and the models are highly resolved.
Upscaling procedures can be applied to reduce computa-
tional demands, though it is essential that the resulting
coarse-model predictions correspond to reference fine-scale
solutions. In this work, we develop an ensemble level
upscaling (EnLU) procedure for compositional systems,
which enables the efficient generation of multiple coarse
models for use in uncertainty quantification. We apply a
newly developed global compositional upscaling method to
provide coarse-scale parameters and functions for selected
realizations. This global upscaling entails transmissibility
and relative permeability upscaling, along with the compu-
tation of α-factors to capture component fluxes. Additional
features include near-well upscaling for all coarse parame-
ters and functions, and iteration on the α-factors, which is
shown to improve accuracy. In the EnLU framework, this
global upscaling is applied for only a few selected reali-
zations. For 90 % or more of the realizations, upscaled
functions are assigned statistically based on quickly com-
puted flow and permeability attributes. A sequential Gaus-
sian co-simulation procedure is incorporated to provide
coarse models that honor the spatial correlation structure of
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the upscaled properties. The resulting EnLU procedure is
applied for multiple realizations of two-dimensional mo-
dels, for both Gaussian and channelized permeability fields.
Results demonstrate that EnLU provides P10, P50, and P90
results for phase and component production rates that are in
close agreement with reference fine-scale results. Less accu-
racy is observed in realization-by-realization comparisons,
though the models are still much more accurate than those
generated using standard coarsening procedures.

Keywords Upscaling · Scale up · Multiscale · Reservoir
simulation · Uncertainty quantification · Compositional
flow · EOR · Near-well upscaling

1 Introduction

Uncertainty quantification is an essential component of
reservoir management. To assess the effects of uncertainty,
multiple highly-resolved geological realizations are gene-
rated, and flow simulation is performed for each model. This
results in high computational costs, especially for compo-
sitional systems, which involve complex physics and many
unknowns. Upscaling can be applied to reduce the com-
putational demands, though the coarsening procedure must
ensure that the resulting flow models provide predictions of
sufficient accuracy relative to fine-scale models. When the
goal is uncertainty quantification, realization-by-realization
agreement may be less important than accuracy in key flow
statistics, such as the P10, P50, and P90 responses for oil,
gas, or component production rates (here the P10 rate indi-
cates the rate corresponding to the tenth percentile of the
cumulative distribution function, and similarly for P50 and
P90 rates).
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In this paper, we develop an ensemble level upscal-
ing (EnLU) procedure for uncertainty quantification
for compositional systems. The objective is to effi-
ciently compute flow statistics using a limited amount
of fine-scale simulation combined with a large num-
ber of inexpensive coarse-scale simulations. To achieve
the required level of accuracy, we apply a newly devel-
oped global upscaling approach, which includes trans-
missibility and relative permeability upscaling for flow
and transport effects, and computation of α-factors
(discussed below) to capture component fluxes. Spe-
cialized near-well upscaling, for the computation of coarse-
scale well index, relative permeability, and α-factors for
well models, is also performed. This detailed composi-
tional upscaling is applied only to a few selected realiza-
tions. For the bulk (90 % or more) of the realizations,
upscaled relative permeabilities and α-factors are assigned
statistically. This assignment is based on quickly-compu-
ted ‘attributes,’ which are determined for each coarse inter-
face in each realization during single-phase upscaling.
A geostatistical sequential Gaussian co-simulation proce-
dure is used in conjunction with the attributes to assign
coarse-scale properties for new realizations, in a manner
that honors the spatial correlation structure of the upscaled
properties.

We now briefly discuss existing upscaling procedures for
single-phase, two-phase, and compositional flow parame-
ters, with emphasis on the methods that are most relevant
to this work. A wide variety of upscaling methods have
been developed to compute coarse-scale permeability or
transmissibility. In this work, we apply a global transmissi-
bility upscaling method, which requires the solution of the
global single-phase pressure equation, since this approach
generally provides the highest level of accuracy. Global
transmissibility upscaling procedures have been presented
in, e.g., [1–4]. The latter two papers [3, 4] applied iteration
to improve the accuracy of the upscaled transmissibilities,
and a related approach will be implemented here in our com-
positional upscaling. Most global upscaling procedures are
applicable for two-point flux approximations, though the
methods developed in [4] are applicable for multipoint flux
approximations.

Multiphase upscaling involves the computation of
coarse-scale relative permeability curves. Global methods
are computationally demanding since they require the time-
dependent solution of the full problem, though they can
still be useful when the upscaled functions can be reused
in subsequent simulations. Recent global and local-global
methods, applicable for use with the transmissibility upsca-
ling procedures noted above, have been presented in [5–7].
A variety of earlier two-phase upscaling procedures are
discussed in [8–11].

The near-well region typically requires specialized treat-
ment in upscaling procedures. Such techniques were first
developed within the context of transmissibility upscaling in
[12]. Later extensions were presented in [2, 13, 14], among
others. Recent two- and three-phase near-well upscaling
procedures have been presented in [15–18]. These papers
demonstrated the important mobility effects that must be
captured in near-well upscaling to assure accuracy in coarse-
scale well rates.

Upscaling procedures for compositional simulations
have also been developed. In [19], the ‘pseudo K-value’
method was introduced to capture differences in composi-
tion between fine- and coarse-scale models. Fayers et al.
[20] developed a dual zone mixing model, which requires
two flash calculations for each coarse grid block. In subse-
quent work, Barker and Fayers [21] simplified this model
and introduced so-called α-factors to correct component
fluxes through coarse-scale interfaces. In [22], streamline
techniques were applied to provide fine-scale information
for use in computing the α-factors. This approach was used
for field cases in [23], though this work only considered re-
latively simple sector models in which the flow was largely
single-phase. The computation of α-factors for three-
dimensional fractured reservoirs with gravity and capilla-
rity was accomplished in [24], though again the flow was
essentially single-phase. Global compositional upscaling
methods based on nonequilibrium thermodynamics have
also been developed [25, 26], and thermodynamically con-
sistent α-factors were derived using this approach [25]. It
is important to note, however, that none of the compo-
sitional upscaling procedures discussed here has included
treatments for the near-well region. Based on earlier fin-
dings for two- and three-phase flow problems, we expect
this to be an essential component of any practical composi-
tional upscaling methodology.

The above discussion applies for realization-by-reali-
zation upscaling, in which flow-based upscaling is applied
for each geological model. The methods described will be
very expensive if applied in this manner for large numbers of
models. This motivates the use of ensemble level upscaling
(EnLU), where the goal is to provide accurate flow statistics
instead of close agreement for each geological realiza-
tion. Chen and Durlofsky [27] first formulated EnLU for
oil-water problems. They considered two-dimensional mod-
els with various styles of heterogeneity and fluid mobility
ratios. In later work [28], EnLUwas extended to challenging
three-dimensional well-driven problems, including cases
with very high mobility ratios. Upscaling and EnLU pro-
cedures for oil-water problems are reviewed in [7]. An
approach for upscaling relative permeability using distance-
based clustering was presented in [29]. This method is
not actually an EnLU approach because it only dealt with
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a single realization, though it is conceptually similar to
EnLU. The EnLU framework has not yet been applied
for compositional problems, as is accomplished in this
work.

This paper proceeds as follows. In Section 2, we present
the governing equations for oil-gas compositional sys-
tems and then describe the global compositional upscaling
method. Numerical results using this approach, for a single
realization, are presented in Section 3. We then introduce
the EnLU methodology for compositional problems in
Section 4. Detailed numerical results using EnLU are pre-
sented in Section 5. We conclude, in Section 6, with a
summary and suggestions for future work.

Full details on the underlying global compositional
upscaling procedure, as well as extensive numerical results
illustrating its performance and robustness for individual
realizations, are presented in [30, 31].

2 Governing equations and global upscaling
procedure

In this section, we present the equations governing oil-gas
compositional systems. The global upscaling methodology
is then described.

2.1 Governing equations

We consider isothermal systems, and assume thermody-
namic equilibrium is achieved instantaneously. Capillary
pressure, gravitational and diffusive effects are neglected for
convenience. The fine-scale mass conservation equation for
component i is given by:
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where superscript f indicates a fine-scale variable, x
f
ij is

the molar fraction of component i in phase j (here j =
oil, gas), ρ

f
j is the phase molar density, λ

f
j = k

f
rj /μ

f
j is

the phase mobility, with k
f
rj and μ

f
j the fine-scale relative

permeability and viscosity of phase j , kf is the (diagonal)
permeability tensor, and pf is pressure. Additional vari-
ables are the source/sink term q

w,f
j , porosity φf , phase

saturation S
f
j , and time t . The total numbers of compo-

nents and phases are denoted by nc and np (np = 2
for oil-gas problems). In this work, the fine-scale relative

permeabilities are taken to be of the form k
f
rg = (S

f
g )2 and

k
f
ro = (1 − S

f
g )2.

Discretized versions of the mass conservation equation
(Eq. 1) are written for each component. These equations
are solved in combination with thermodynamic equilibrium
constraints of the form Fi,o − Fi,g = 0, where Fi,o and Fi,g

are the fugacities of component i in the oil and gas phases.
Other constraints that are introduced to fully specify the
system are S

f
o + S

f
g = 1 and

∑nc

i=1 x
f
ij = 1.

In this work, we take the coarse-scale equations to be
of the same form as the fine-scale equations. Coarse-scale
effects are captured by the upscaled parameters/functions k∗
(or T ∗ and WI ∗, described below), λ∗

j (or k∗
rj ), and αij . The

use of αij in coarse-scale compositional models was intro-
duced in [21]. Note that we use the superscript ∗ to indicate
an upscaled parameter or function (no superscript is used
for αij because it does not have a fine-scale analog), and
the superscript c to indicate a coarse-scale dependent vari-
able. Mass conservation for component i is expressed on the
coarse scale using:
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Here αij acts to adjust both the flux term and the well term
for each component in each phase. The constraints specified
above also appear. Coarse-scale porosity φ∗ is computed
such that pore volume is preserved between the coarse block
and the corresponding fine-scale cells.

2.2 Global compositional upscaling procedure

The techniques applied here entail calculation of coarse-
scale parameters with the goal of matching fluxes, between
fine and coarse solutions, through block interfaces (or well
completions). We proceed by first computing the upscaled
transmissibility T ∗ and well index WI ∗ from a global
single-phase flow solution. We then solve the global com-
positional problem, and use this solution to compute the
upscaled relative permeability functions k∗

rj , which cap-
ture phase flow rates in the coarse-scale model, and αij ,
which capture component flow rates in each phase. To
improve the accuracy of the overall procedure, we iterate
on the αij , using an approach analogous to those applied
in [3, 4] for the calculation of T ∗. We now present expres-
sions for the upscaled parameters. For full details, see
[30, 31].

Figure 1 shows the fine- and coarse-scale simulation
grids for both the global and local regions. The first step
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(a) global domain

coarse block m    coarse block m+1

(b) local region

Fig. 1 Schematic showing the global domain (with one injection well
and one production well) and a local two-coarse-block region (light
lines indicate the fine grid and heavy lines indicate the coarse grid)

of the upscaling methodology is to solve the global steady-
state incompressible single-phase pressure equation (with
viscosity μ = 1), with flow driven by the actual wells in the
target problem (Fig. 1a). In the calculation of upscaled trans-
missibility, our aim is to compute T ∗ such that the integrated
(summed) fine-scale flux through the region corresponding
to the target coarse interface is reproduced in the coarse-
scale solution. By approximating the coarse quantities as
averages/sums over the corresponding fine-scale regions,
T ∗ can be calculated as:

T ∗ =
∑
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f )l〈
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〉
m

− 〈
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〉
m+1

, (3)

where 〈·〉m denotes a bulk-volume-average (for pressure) or
pore-volume-average (for other quantities) property com-
puted over the fine-scale cells lying within coarse-block
m (see Fig. 1b),

∑
l (q

f )l is the integrated fine-scale flux
through the target coarse interface, with l denoting the
fine-scale interfaces that lie on the target coarse interface
(designated by arrows in Fig. 1b). The computation for
the upscaled well index WI ∗ is similar to that for T ∗.
Specifically, we now apply:
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where (qw,f )l is the flow rate between the well and fine-
scale cell l (with l designating a cell that lies within coarse-
well-block m) and
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is the average wellbore pressure
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compositional flow problem. This is by far the most time-
consuming step of the procedure. The upscaled relative
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In this work, αij are taken to be functions of Sc
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upstream block. These functions are computed such that the
integrated fine-scale flux of each component in each phase,
given by
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Consistent with the findings in [15–17], upscaled k∗
rj

and αij are also required for the coarse-scale well model.
These functions are computed using expressions similar to
Eqs. 5 and 6, except (q

w,f
j )l and (q

w,f
ij )l appear in place

of (q
f
j )l and (q

f
ij )l , and the pressure difference is between

the wellbore and the coarse well block (as in Eq. 4). See
[30, 31] for the detailed expressions for coarse-scale well
terms.

The upscaled k∗
rj and αij computed using Eqs. 5 and 6

may, in some cases, display unphysical behavior. This often
results from having small (phase or component) flow rates,
along with small pressure differences, through a particular
coarse interface. In this work, we treat as ‘unphysical’ any
k∗
rj or αij values that are less than zero or larger than five.
These values are eliminated from the upscaled functions.
Further discussion regarding the causes of these unphys-
ical points, and our detailed treatments, are provided in
[30].

We have found that enhanced accuracy can be achieved
by iterating on αij to minimize the difference between fine-
and coarse-scale fluxes. This type of treatment was intro-
duced in [3] to improve the accuracy of T ∗ in a global
single-phase upscaling procedure. With this approach, at a
particular time step, the next iterate of αij , denoted αν+1

ij , is
given by

αν+1
ij = dαν

ij + (1 − d)

∑
l
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q

f
ij

)
l

q
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ij

αν
ij . (7)

Here αν
ij is the αij value at the current iteration, qc

ij is
the coarse-scale flux of component i in phase j through
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the target interface,
∑

l (q
f
ij )l is the integrated fine-scale

flux, and d is a damping factor (we use d = 0.7). This
procedure requires us to repeat the time step within the
coarse-scale simulation several times (we typically use five
iterations), though this is very inexpensive compared to
the global compositional solution. In this work, Stanford’s
General Purpose Research Simulator, GPRS [32, 33], is
applied for all fine- and coarse-scale simulations. We mod-
ified this code to enable iteration on αij as defined in
Eq. 7.

3 Numerical results using global upscaling
procedure

We now demonstrate the global compositional upscaling
procedure for a single realization of a heterogeneous two-
dimensional (x − y) model. The isotropic (kx = ky)
permeability field was generated using sequential Gaus-
sian simulation [34] with a spherical variogram model and
dimensionless correlation lengths of lx = ly = 0.3. The
variance of log-permeability, designated σ , was set to 1.8.
This corresponds to a relatively high degree of heterogene-
ity. The fine-scale grid contains 99×99 cells, of dimensions
	x = 	y = 25 ft and 	z = 10 ft. The model contains
four production wells and one injection well arranged in a
five-spot pattern. The permeability field and well locations
are shown in Fig. 2. For this case, porosity is related to per-
meability via φ = 0.02 log k + 0.136, with minimum and
maximum porosity values constrained to be 0.15 and 0.25.

The injection well is prescribed to operate at a fixed pres-
sure of 1500 psi and the production wells all operate at
500 psi. Initial reservoir pressure is 800 psi. Temperature is
fixed at 300 K (the problem is isothermal). The initial oil is
a mixture of four components: C1 (10 %), CO2 (18.09 %),
C4 (37.66 %), and C10 (34.25 %). Pure C1 is injected. This
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Fig. 2 Permeability field (log k) and well locations

set of components was considered in [35] and corresponds
to an immiscible system.

The coarse-scale model is constructed by uniformly
coarsening the fine model by a factor of nine in each direc-
tion (for an upscaling ratio of 81). The coarse model thus
contains 11 × 11 = 121 blocks. We simulate flow for a
period of 2500 days. As noted earlier, GPRS is used for all
simulations.

Figure 3 displays the field oil and gas production rates
(i.e., summed over the four producers) for this case. Results
are shown for the fine-scale model (black curve), the ‘stan-
dard’ coarse model (red dashed curve), which was generated
by computing T ∗ and WI ∗ and using k∗

rj = k
f
rj and αij =

1, a globally upscaled model generated with αij iteration
(green points), a globally upscaled model generated without
iterating on αij (blue dot-dashed curve), and a coarse model
generated using only global two-phase upscaling (pink dot-
dashed curve). This last model includes T ∗, WI ∗, and k∗

rj ,
but not αij (which means αij = 1). Results for these dif-
ferent models allow us to assess the impact of the various
upscaled quantities. We reiterate that, in all coarse mod-
els, T ∗ and WI ∗ are computed using global single-phase
upscaling.

We see that the standard coarse model leads to signifi-
cant errors relative to the reference fine-scale solution. For
example, the gas rate is consistently underpredicted by the
standard coarse model, and the peak in oil rate occurs about
600 days late. Global two-phase upscaling provides results
that are generally accurate, though error relative to the fine-
scale model is still evident (e.g., in the time of peak oil
production). The use of upscaled αij (globally upscaled
model without iteration) improves the results further rela-
tive to the global two-phase upscaling model. The iterative
global upscaling model provides the best overall accuracy,
including the precise prediction of peak oil production rate
and time. The results in Fig. 3 clearly show the added bene-
fit, in terms of solution accuracy, of each component of the
upscaling procedure.

We next present, in Fig. 4, the field production rates
for all four components. Because pure C1 is injected in
this case, the C1 production rate increases dramatically
after breakthrough, which occurs at around 400 days in
the fine-scale model. Most of the C4 and C10 stays in the
oil phase, so their production rates (Fig. 4c, d) are simi-
lar to the oil production rate in Fig. 3a. Comparisons of
fine- and coarse-scale results lead to observations that are
analogous to those offered above, namely that the use of
the standard coarse model leads to inaccurate results, and
that the already high accuracy of the non-iterated globally
upscaled model is improved through iteration. Interestingly,
we observe more significant error in CO2 rates when using
global two-phase upscaling only. This is because the parti-
tioning of CO2 between the gas and oil phases is strongly
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Fig. 3 Oil and gas field
production rates for
single-realization example
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impacted by phase behavior, and this is not fully captured
in the coarse-scale model unless we include αij . These
results demonstrate that our compositional upscaling pro-
cedure is able to capture component flow rates in addition
to phase flow rates. Well-by-well production results, though
not shown here, also display high accuracy.

Finally, in Fig. 5, we show the pressure fields at
2500 days for some of the models. The averaged fine-scale
result (Fig. 5b) is obtained by bulk-volume-averaging the
fine-scale pressure field (Fig. 5a) onto the coarse grid. We
see the impact of the low permeability regions between the

injector and Producers 1 and 3 in the pressure distribu-
tions. Significant discrepancy between the standard coarse
model result (Fig. 5c) and the averaged fine-scale field is
evident. The globally upscaled model (Fig. 5d), by con-
trast, provides a very accurate pressure distribution, and
the improvement relative to the standard coarse model is
significant.

For additional single-realization upscaling results,
including phase and component production rates for indivi-
dual wells, robustness results, and three-dimensional model
results, see [30, 31].

Fig. 4 Component field
production rates for
single-realization example
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4 Ensemble level upscaling methodology

As discussed in Section 1, ensemble level upscaling is appli-
cable when the goal is to simulate multiple geological real-
izations. In EnLU, full flow-based compositional upscaling,
as described in the previous section, is applied only to a
small fraction of the realizations, though global transmis-
sibility upscaling is performed for all realizations. The k∗

rj

and αij coarse-scale functions are then ‘calibrated’ with
easily-computed attributes, which can be based on either
(static) local permeability data or single-phase flow quan-
tities generated during single-phase upscaling. Upscaled
functions for all interfaces in new realizations are then
statistically generated based on the calibrations and the
spatial correlation structure in the upscaled functions, as
observed in models for which full flow-based compositional
upscaling was applied. We now describe the detailed EnLU
procedure.

4.1 Parameterization of k∗
rj

and αij

As noted earlier, the upscaled quantities k∗
rj and αij are

here taken to be functions of Sc
g only. Two k∗

rj curves for
the example presented in Section 3, along with the fine-
scale (rock) curves, are shown in Fig. 6. The upscaled
curves differ due to the different permeability and flow

fields experienced by the two interfaces. We now intro-
duce a parameterization for the coarse-scale functions,
which acts to facilitate their calibration to quickly-computed
attributes.

In this work, k∗
rj and αij are represented in terms of

two quantities, designated δkrj and δαij , that measure the
(signed) difference between the upscaled and fine-scale
curves. These differences are computed as follows:

δkrj = 1

N

N∑
i=1

(
k∗
rj (Sg,i) − k

f
rj (Sg,i)

)
,

δαij = 1

N

N∑
i=1

(
αij (Sg,i) − 1

)
, (8)

where the N saturation values are equally spaced between 0
and 1, and Sg,i indicates Sg at point i. Because αij = 1 in
the fine-scale model, (αij − 1) is used in the calculation of
δαij .

We note that absolute values were applied in the param-
eterizations in [27, 28]. Because we observe both positive
and negative δkrj in our global upscaling results (i.e., some
of the k∗

rj curves are on average above, and some are on

average below, the k
f
rj curve), we instead apply the form

shown in Eq. 8. If absolute values were used in place of

Fig. 5 Pressure distributions for
single-realization example
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(b) averaged fine-scale model
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signed differences, we would be unable to distinguish nega-
tive deviations from positive deviations, which would affect
model accuracy. As is evident in Fig. 6, the sign of the dif-
ference between k∗

rj and k
f
rj can change over the range of S

c
g ,

and this results in some amount of cancellation in the δkrj

computation in Eq. 8. Over most of the Sc
g range, however,

k∗
rj is generally either above or below k

f
rj , so the cancella-

tion effect is typically small. Thus, it is still advantageous
to use a signed difference in Eq. 8 rather than the absolute
value.

Because of the variable (and sometimes irregular) shape
of some of the upscaled functions, this parameterization
cannot differentiate upscaled functions very precisely (e.g.,
different k∗

rj curves may correspond to the same or very
similar δkrj values). Other methods have been proposed for
representing upscaled relative permeability (or total mobil-
ity and fractional flow) functions, and some of these are
discussed within the context of EnLU in [27]. Dupouy et al.
[36], for example, suggested several approaches includ-
ing the use of functional models to represent the upscaled
curves. None of the proposed methods is fully general, how-
ever, given the range of behaviors the upscaled functions
can display. The simple parameterization used here has the
advantage of requiring us to calibrate, and then determine,
only a single parameter for each upscaled function within
EnLU. Were we to represent coarse-scale functions in terms
of several parameters, we would then need to calibrate and
determine multiple (potentially related) parameters, which
could lead to additional complications. In any event, the
use of Eq. 8 will be shown to be fully adequate for current
purposes, as the goal in EnLU is to match fine-scale flow
statistics rather than to achieve realization-by-realization
agreement.

4.2 Calibration of k∗
rj

and αij to attributes

We now define attributes that (1) can be quickly calculated
for a given coarse-scale interface, and (2) are able to pro-
vide a reasonable correlation with δkrj or δαij . For new

realizations, we can then simply compute the attributes and
apply the previously established correlation to provide the
upscaled functions. This approach avoids the need for any
additional (expensive) flow-based upscaling.

In general, the appropriate attributes for a particular
application may be somewhat problem-specific, and their
determination requires numerical experimentation. In this
work, however, we found that the attributes suggested in ear-
lier EnLU studies provided satisfactory performance. The
specific set of attributes used here are the standard deviation
of the fine-scale log-permeability over the upstream coarse
block (σ = σ(log k)), the coefficient of variation of the
fine-scale single-phase velocity (C = CV(uf )) computed
for the upstream coarse block, and the integrated fine-scale
single-phase flow rate (Q = ∑

qf ) through the target
coarse interface.

The attribute σ can be computed quickly from the fine-
scale permeability distribution, and C and Q can be readily
calculated from the global fine-scale pressure solution used
to determine T ∗ and WI ∗ in global single-phase upscal-
ing. Previous work [37] on subgrid modeling for two-phase
flow problems showed that upscaled relative permeability
functions are impacted significantly by fluctuations (rel-
ative to the block average) of fine-scale saturation and
velocity within the coarse grid block. These effects are cap-
tured approximately by the attributes σ (which quantifies
local permeability heterogeneity) and C (which describes
the variation of the fine-scale velocity). In addition, we
observed that the upscaled functions correlate with the
integrated fine-scale single-phase flow rate Q. This param-
eter is able to distinguish interfaces or well blocks subject
to different types of flow conditions, which is useful for
assigning upscaled functions. The upscaled (parameterized)
functions can now be expressed as:

δkrj = F1 (σ,C, Q) , δαij = F2 (σ,C, Q) . (9)

The calibration used in this work differs from that used
in [27, 28]. In those studies, the attributes were clustered
(using K-means clustering) and the cumulative distribution

Fig. 6 Upscaled (k∗
rj ) functions

for two different coarse
interfaces for the example case
in Section 3
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function (CDF) for each cluster was constructed. The CDFs
were then used to provide a statistical correlation between
the upscaled functions and the attributes. In this work, we
establish the correlation directly using Eq. 9. For inter-
faces for which the upscaled functions have been computed
through flow simulation, we first normalize (using uniform
score transformation [38]) the attributes so they range from
0 to 1. We can (conceptually) then plot each set of attributes
in normalized σ − C − Q space. Each of these points cor-
responds to a particular δkrj and δαij . Given a new set of
attributes (normalized σ − C − Q values), we can then
apply some type of interpolation, or simply find the ‘closest’
calibration point, to determine δkrj and δαij .

For the two-dimensional models considered in this work,
we perform this calibration separately for interfaces ori-
ented in the x- and y-directions. Interfaces surrounding the
well blocks are also treated separately, as are the upscaled
functions for the production and injection well blocks (recall
that these upscaled functions appear in the well model). For
three-dimensional systems, we would additionally treat z-
direction interfaces separately. This approach should render
the overall EnLU procedure applicable for anisotropic sys-
tems, in which case δkrj and δαij may vary strongly with
direction. Although not considered here, we note that EnLU
was successfully applied to three-dimensional anisotropic
oil-water systems (with kz/kx = 0.1) in [28]. In addition,
the underlying global compositional upscaling procedure
has been applied for anisotropic three-dimensional systems
in [30]. Thus, we expect the compositional EnLU procedure
presented here to be applicable for such systems, though this
will have to be verified in future work.

4.3 Estimation of upscaled functions for new realizations

For new realizations, in order to avoid performing flow-
based upscaling, we simply compute normalized σ , C and
Q for a target interface, and then find the closest (in terms
of Euclidean distance) calibration point in normalized σ −
C − Q space. The δkrj and δαij values associated with the
closest calibration point can then be assigned to the target

from   
attributes 

Variogram  
from numerically 
computed

co-sGsim 

for  
new realization 

Fig. 7 Schematic of the geostatistical procedure used to assign δkrg

interface. As indicated above, different calibrations are used
for different types of interfaces.

Were we to use directly the δkrj and δαij computed in
this manner, the assignment of upscaled functions would
be deterministic. In addition, the functions might not honor
the spatial correlation structure observed in the calibration
data. It may in fact be important to honor, at least approx-
imately, the spatial correlation structure of δkrj and δαij ,
because this structure can impact flow behavior (e.g., gas
flow rate will be enhanced through a region with contin-
uously high δkrg values). The deterministically generated
δkrj and δαij somewhat honor the spatial structure of the
calibration data, since the attributes follow, to some extent,
these spatial statistics. We have observed, however, that
the correlation structure of δkrj and δαij is better resolved
through application of a geostatistical procedure, which we
now describe.

This issue was addressed in [28], and we proceed here
along similar lines. We focus here on δkrg (assignment
of other upscaled functions will be described below). To
assign δkrg , we apply sequential Gaussian co-simulation
(co-sGsim) to combine the δkrg determined from Eq. 9
with estimates that honor the spatial correlation structure
observed in the δkrg generated from global compositional
upscaling (the calibration data). To accomplish this, vari-
ogram modeling is performed after the requisite number of
realizations have been upscaled using the flow-based pro-
cedure. All of the calibration data for a particular type of
interface are used in the variogram modeling. We then treat
the δkrg determined from Eq. 9 as ‘soft’ data. In co-sGsim,
these soft data are combined with values estimated from
the variogram to provide the final δkrg . This procedure is
illustrated schematically in Fig. 7.

When applying co-sGsim, to alleviate the impact of
extreme values, we first perform a uniform score trans-
formation [38] of δkrg . Geostatistically simulated values
must then be back-transformed to obtain the final δkrg .
Because δkrg is just a single parameter, we require a means
to proceed from δkrg to k∗

rg(S
c
g) (and similarly for k∗

ro and
αij ). Our approach is as follows. Given a co-sGsim value of
δkrg for a target interface, we first find the closest calibra-
tion δkrg value. Then, the k∗

rg(S
c
g) curve that corresponds to

this δkrg value is assigned to the target interface. We addi-
tionally assign the corresponding calibration k∗

ro(S
c
g) and

αij (S
c
g) functions to the target interface; i.e., the k∗

ro and αij

associated with the same coarse interface as k∗
rg . This treat-

ment acts to maintain consistency between the coarse-scale
functions, in that they all derive from the same coarse-
scale interface. The assignment is based on δkrg because
we have found this parameter to display the clearest spatial
correlation structure.

We note that a small change in the δkrg value can result
in the selection of a different set of upscaled functions. We
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expect the upscaled functions associated with nearby δkrg to
be sufficiently similar, however, such that this treatment will
not introduce significant inaccuracy. Based on the numerical
results presented below, this procedure does appear to pro-
vide accurate ensemble level predictions. It is possible that
an alternative approach for proceeding from δkrg to a set of
upscaled functions could lead to even better accuracy, either
at the ensemble or realization-by-realization level.

The assignment of k∗
rj and αij for well terms is based

only on attributes and does not require co-sGsim. We pro-
ceed in this way because the wells are independent of
each other, so there is no spatial correlation structure to
exploit. For additional technical details on the assignment
of upscaled functions in EnLU, see [30].

5 Numerical results for EnLU

We now apply EnLU for uncertainty quantification for two
different systems. The first case involves Gaussian mod-
els, as considered in Section 3, and the second case entails
channelized models. Five-spot well patterns are used in both
cases.

A total of 100 realizations are employed in each case.
We first perform fine-scale simulation for all 100 realiza-
tions to provide reference results (this is the step we seek
to avoid in practice). Full flow-based upscaling (global
compositional upscaling, with iteration) is then performed
for all realizations. We view these upscaled results as
(essentially) the best coarse-scale results that we can
achieve, so in this sense they represent the reference to
which EnLU should be compared. In the EnLU results,
calibration data are generated by performing flow-based
upscaling on 10 of the 100 realizations, except where oth-
erwise noted. The realizations used for flow-based upsca-
ling are those with the largest injection/production rates,
as determined during the transmissibility upscaling step.
We select these realizations because larger flow rates gene-
rally result in more regions of the model experien-
cing a significant range of variation in Sc

g , and this improves
the quality of the upscaled functions used in EnLU.

5.1 Gaussian permeability field

As in Section 3, the fine-scale model contains 99 × 99 grid
blocks and the coarse-scale model is uniformly upscaled
to 11 × 11. The geostatistical parameters, fluid system,
initial conditions, and well specifications are as described
previously (pure C1 is injected into a four-component sys-
tem). The only property that is different is porosity; here

we use a constant value of 0.2. Three permeability (log k)
realizations are shown in Fig. 8. These realizations are not
conditioned to any well data, so the permeability fields
differ significantly.

Fine-scale simulation results for oil and gas field pro-
duction rates for all 100 realizations are shown in Fig. 9.
The thin gray lines represent results for each realization, and
the heavy lines indicate the P10 (lower dashed curves), P50
(solid curves), and P90 (upper dashed curves) flow statis-
tics. Substantial realization-to-realization variation in both
oil and gas production rates is evident. Note that the ratio of
the P90 gas rate to the P10 gas rate at 3000 days is over a
factor of 10.

We now compare the flow statistics for coarse-scale mod-
els to those from the fine-scale models. Figure 10 presents
the P10, P50, and P90 curves for field oil production rate.
In Fig. 10 and subsequent figures, the solid line indicates
the P50 production rate and the dashed lines indicate the
P10 and P90 production rates. Fine-scale results are shown
in black in all figures. Results using standard coarse mod-
els, which again involve the use of T ∗ and WI ∗ but no
other upscaled quantities, are shown as the red curves in Fig.
10a. These models do not provide very accurate predictions,
and they clearly underpredict oil rate at early time. Results
using flow-based upscaling for all 100 models are shown
as the green curves in Fig. 10b. These results closely match
the fine-scale results, as would be expected. EnLU results,
shown as the blue curves in Fig. 10c, are also seen to be
of clearly acceptable accuracy. They are not as accurate as
the results in Fig. 10b, but they provide significant improve-
ment relative to the standard coarse results shown in Fig.
10a. This is significant, since these results were generated
by performing global upscaling on only 10 % of the models.

Results for field gas production rate and component
C1 production rate are presented in Figs. 11 and 12. The
standard coarse models (Figs. 11a and 12a) significantly
underpredict both quantities, while the globally upscaled
and EnLU-generated models provide generally high degrees
of accuracy. A slight degradation in EnLU accuracy is seen
in the P90 results for C1 production rate (Fig. 12c).

We next present results for a particular (representative)
well, Producer 1. The P10, P50, and P90 gas rates for Pro-
ducer 1 are shown in Fig. 13. Consistent with Fig. 11,
we again observe large errors in results using standard
coarse models, while globally upscaled models and EnLU
models provide generally accurate results. The EnLU results
are not as accurate as those for field rates (compare Figs.
11c to 13c), though they are clearly of acceptable accuracy.

Finally, we present realization-by-realization results for
the error incurred by the different approaches. Error in phase
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Fig. 8 Permeability maps (log k) for three realizations (Gaussian permeability field)

Fig. 9 Oil and gas field
production rates for 100
fine-scale models (Gaussian
permeability field). P10, P50,
and P90 results shown as heavy
lines
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(c) EnLU (10% sim.)

Fig. 10 P10, P50, and P90 curves for oil field production rate (Gaussian permeability field)
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(c) EnLU (10% sim.)

Fig. 11 P10, P50 and P90 curves for gas field production rate (Gaussian permeability field)
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Fig. 12 P10, P50, and P90 curves for C1 field production rate (Gaussian permeability field)
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Fig. 13 P10, P50, and P90 curves for gas production rate for Producer 1 (Gaussian permeability field)
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Fig. 14 Relative error in oil and
gas field production rates for
100 realizations (Gaussian
permeability field)
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Table 1 Median errors for oil,
gas, and all component field
production rates

Coarse model Oil Gas C1 CO2 C4 C10

Standard coarse 31.2 % 33.8 % 49.8 % 35.2 % 28.7 % 30.6 %

Full global upscaling 3.3 % 3.1 % 4.3 % 4.4 % 3.2 % 3.5 %

EnLU 11.1 % 9.3 % 13.6 % 12.4 % 8.5 % 10.6 %

Fig. 15 P10, P50, and P90
curves for oil and gas field
production rates (Gaussian
permeability field). EnLU
results use flow-based upscaling
of only five realizations
(previous results used ten
realizations)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

Time (days)

O
il 

ra
te

 (
bb

l/d
ay

)

 

 

 fine
 EnLU

(a) Oil rate

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

Time (days)

G
as

 r
at

e 
(m

sc
f/d

ay
)

 

 

 fine
 EnLU

(b) Gas rate

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

2

3

4

5

6

7

8

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55 1

2

3

4

5

6

7

8

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55
2

3

4

5

6

7

8

Fig. 16 Permeability maps (log k) for three realizations (channelized permeability field)



538 Comput Geosci (2016) 20:525–540

0 200 400 600 800
500

1000

1500

2000

Time (days)

O
il 

ra
te

 (
bb

l/d
ay

)

 

 

 fine
 standard coarse

(a) Standard coarse

0 200 400 600 800
500

1000

1500

2000

Time (days)

O
il 

ra
te

 (
bb

l/d
ay

)

 

 

 fine
 comp upsc (iter)

(b) Full upscaled

0 200 400 600 800
500

1000

1500

2000

Time (days)

O
il 

ra
te

 (
bb

l/d
ay

)

 

 

 fine
 EnLU

(c) EnLU (10% sim.)

Fig. 17 P10, P50, and P90 curves for oil field production rate (channelized permeability field)

production rate, designated Ej , is computed as:

Ej =
∫
t

∣∣∣qc
j − q

f
j

∣∣∣ dt

∫
t
q

f
j dt

, (10)

where qc
j and q

f
j are coarse- and fine-scale field production

rates for phase j . An analogous expression is used to com-
pute error in component rates. The realizations in Fig. 14
are ordered based on the error in the standard coarse model
(indicated by the red points). The ordering differs between
Figs. 14a and b. The median errors for field oil, gas, and all
component production rates, for each method, are listed in
Table 1. For oil rate, the median error in the standard coarse
models is over 30 %. Full global upscaling reduces the
median error to about 3 %, while EnLU provides a median
error of 11 %.

For all of the entries in Table 1, EnLU errors are
between those for full global upscaling and standard coars-
ening, though they are much closer to those for full global
upscaling. These results are consistent with expectations.
Although EnLU is more accurate than standard upscaling,

it does not provide results that are as accurate as those
achieved by performing flow-based upscaling for all realiza-
tions. Another advantage of EnLU over standard upscaling
is that EnLU error is largely unbiased, which enables accu-
rate predictions for P10, P50, and P90 rates.

In the EnLU procedure, the majority of the computa-
tion is associated with the simulation of fine-scale models,
as required for the global upscaling procedure. Although
we would like to perform as few fine-scale simulations
as possible, coarse-model accuracy will degrade if too
few fine-scale runs are performed. We now investigate the
impact of using only five globally upscaled models (each
of which requires global compositional simulation) instead
of ten models, as were used in previous results. The P10,
P50, and P90 curves for field oil and gas rates using EnLU
with five globally upscaled models are shown in Fig. 15.
These results are not as accurate as EnLU results based on
ten upscaled models (Figs. 10c and 11c), though they still
provide significant improvement over standard coarse mod-
els (Figs. 10a and 11a). In future work, it will be useful
to develop procedures to estimate the required number of
globally upscaled models to use in EnLU.
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Fig. 18 P10, P50, and P90 curves for gas field production rate (channelized permeability field)
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All simulation runs in this work were performed on a PC
with Intel Core2 Duo CPU (2.66 GHz). A single fine-scale
simulation for this case entails over 3 h of computation time.
The computation of T ∗, plus the calculation of k∗

rj and the
initial estimate of αij from the fine-scale results, requires
a total of about 10–15 s. The iteration procedure applied
to compute improved αij requires another 1–2 min. The
coarse-model simulation is achieved in about 30 s. Thus,
nearly all of the computation corresponds to the fine-scale
compositional simulations. The speedup achieved through
use of EnLU, relative to performing fine-scale simulation on
all models, is essentially just the ratio of the number of fine-
scale simulations required by the two approaches. Thus, for
an ensemble of 100 realizations, when using EnLU with ten
globally upscaled models, we achieve a speedup factor of
about 10, and when five globally upscaled models are used,
we achieve a speedup factor of about 20.

5.2 Channelized permeability fields

We now apply the EnLU procedure for more complex mod-
els characterized by channelized permeability fields. All
realizations were generated using Stanford Geostatistical
Modeling Software, SGeMS [39]. The permeability distri-
butions (log k) for three realizations are shown in Fig. 16.
A five-spot well pattern with one injector and four produc-
ers is again used. The models are conditioned such that the
injection well always penetrates mud (to avoid very fast
breakthrough). The fine-scale model contains 55 × 55 grid
blocks, with each block of dimensions 50 ft × 50 ft × 10 ft.
The coarse-scale model, generated by uniformly coarsening
the fine model, contains 11 × 11 blocks. We take kx = ky

for each fine-scale cell. Porosity is prescribed to be constant
at a value of 0.25.

For this case, we inject pure CO2 into a four-component
system initially containing C1 (20 %), CO2 (1 %), C4

(29 %), and C10 (50 %). The reservoir is at a constant
temperature of 350 K and an initial pressure of 1050 psi.
The injection well operates at a pressure of 1500 psi, and
the production wells at a pressure of 500 psi. The simulation
period is 800 days.

Results for P10, P50, and P90 field oil and gas production
rates are shown in Figs. 17 and 18. Our general observations
regarding the relative accuracy of the three procedures are
consistent with those in the previous case. We again see that
EnLU provides results that are nearly as accurate as those
from full flow-based upscaling, but with only 10 % of the
upscaling effort. This again highlights the potential applica-
bility of EnLU for uncertainty quantification in challenging
compositional problems. The speedup achieved using EnLU
for this case is about a factor of 10, with the timings domi-
nated by the fine-scale compositional simulations, as in the

previous example. EnLU results for additional systems are
presented in [30].

6 Concluding remarks

In this paper, we presented an ensemble level upscaling pro-
cedure for compositional flow simulation. The underlying
iterative-global upscaling technique entails the computa-
tion of upscaled transmissibilities, relative permeabilities,
and α-factors for each coarse-scale interface. Coarse-scale
iteration on α-factors provides improved accuracy at low
cost relative to the global fine-scale simulation required
for the upscaling. We defined appropriate attributes for
use in the EnLU calibration step. The spatial correlation
structure of upscaled two-phase flow functions was quan-
tified via variogram modeling, and this structure was then
used within a sequential Gaussian co-simulation framework.
This enables the coarse-scale functions assigned in EnLU
to approximately honor the spatial correlation structure
observed in realizations for which flow-based upscaling was
applied.

We illustrated the high degree of accuracy of the iterative
global upscaling method for a single realization of a two-
dimensional Gaussian permeability field. EnLU was then
applied to compositional problems involving gas injection
into four-component systems. Both Gaussian and channel-
ized permeability fields were considered. It was shown that
the use of standard upscaling (T ∗ and WI ∗ only) led to
substantial errors for the cases considered. Global composi-
tional upscaling, by contrast, yielded coarse results of very
high accuracy. The use of EnLU was shown to provide mod-
els that closely matched the flow statistics (P10, P50, P90)
of the fine-scale production rates. In fact, accuracy close
to that from global compositional upscaling was achieved.
EnLU also improved the realization-by-realization agree-
ment significantly compared to using standard coarse mod-
els, though its accuracy was not as high as that from full
flow-based upscaling.

There are a number of issues that should be consid-
ered in future work. Rather than apply global compositional
upscaling, more efficient local-global upscaling [30], or a
combination of local-global and global approaches, could be
incorporated into the EnLU framework. This could improve
the overall computational efficiency significantly. The use
of different or additional attributes (e.g., time of flight) in
EnLU should also be investigated. This, along with spe-
cialized techniques for determining the required number of
realizations and selecting particular realizations for global
upscaling, could lead to improved performance and/or bet-
ter efficiency. Finally, our procedures should be extended
to treat models that are more complex in terms of both
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grid geometry and fluid systems. At that point, the meth-
ods presented in this paper should be applicable for practical
cases.
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