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Abstract
Monitoring is an important component of geological carbon storage operations because it provides data that can be used to
estimate key quantities such as CO2 plume location. The design of the monitoring strategy is complicated, however, because
the monitoring plan must be established prior to the availability of extensive flow data. In this work, we present and apply a
framework that integrates monitoring well optimization and (subsequent) history matching. The monitoring well optimization
entails finding the locations of monitoring wells such that, with the data acquired at those locations, the expected uncertainty
reduction in a particular flow quantity is maximized. This optimization requires the simulation of a large set of prior models,
though these simulations need only be performed once for a given injection scenario. Once the monitoring wells are in place
and CO2 injection begins, history matching is performed using the monitoring data. This is accomplished here using an
ensemble smoother with multiple data assimilation. The overall framework is applied to variogram-based geomodels that
are representative of an actual storage project under development in the USA. Two injection scenarios are considered with
two different (synthetic) ‘true’ models, which provide the observed data. History matched models are constructed using
data from both optimally located and heuristically placed monitoring wells. Posterior uncertainty, evaluated in terms of the
cumulative distribution function for a metric related to plume extent over the ensemble of history matched models, is shown
to be minimized through use of optimized monitoring wells. These results demonstrate the importance of optimizing the
monitoring plan, and the degree of uncertainty reduction that can be realistically achieved.

Keywords Carbon capture and Storage · Monitoring well · Optimization · Reservoir simulation · Data assimilation

1 Introduction

Subsurface storage of CO2 in deep saline aquifers repre-
sents a promising strategy for achieving large reductions in
greenhouse gas emissions to the atmosphere. Monitoring is
an essential aspect of any storage operation, as it can iden-
tify leakage and provide information on the location of the
CO2 plume. Although monitoring is conducted over many
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decades, an initial monitoring plan must be defined when
CO2 injection begins. This poses challenges because the
storage aquifer geology is highly uncertain at this point, yet
monitoring well locations and types must nonetheless be in
place.

In this paper, we describe an overall strategy for deter-
mining the ‘optimal’ locations of monitoring wells and for
history matching using pressure and saturation data as they
are collected during CO2 injection. The monitoring well
optimization is accomplished using the general approach
described in [21]. This procedure requires simulation of an
ensemble of prior geological realizations. Monitoring well
locations are then determined such that the expected uncer-
tainty reduction is maximized (under Gaussian assumptions
on the data). Once CO2 injection is underway, the moni-
toring wells provide pressure and saturation data. History
matching using these observed data is accomplished through
use of an ensemble smoother withmultiple data assimilation,
ES-MDA [7]. Our procedures are demonstrated on models
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corresponding to an actual sequestration project now being
planned for the Illinois basin in the USA.

Many previous investigations have addressed monitor-
ing and history matching for CO2 storage operations. Here
we discuss studies that are most relevant to our work. His-
tory matching using multilevel pressure time-series data was
performed for a carbon sequestration pilot project in Illi-
nois, USA [20]. The history matching process was heuristic,
though the results demonstrated the utility of assimilating
multilevel pressure data. Geophysical data from electromag-
netic and seismic surveys, as well as satellite images, have
also been used for history matching in carbon sequestration
[1, 16, 23]. According to [9, 13], well-based pressure and sat-
uration measurements, along with seismic surveys, provide
the most informative data in practice.

Recent studies involving data assimilation have often
applied some type of ensemble-based history matching. ES-
MDA, in particular, has been widely used in CO2 storage
studies [2, 6, 22]. ES-MDA is more expensive than some
other ensemble-based methods because the data assimilation
computations are repeated several times (there are typically
4–10 assimilation steps). For this reason, recent work has
focused on reducing computational cost by modifying the
algorithm [6, 10, 22] or by using surrogate flow models to
approximate expensive forward flow simulations [12, 14, 16,
23, 24].

There has also been a substantial amount of work on
determining monitoring plans for CO2 storage projects.
Monitoringwells can be used for different objectives, includ-
ing detecting leakage and identifying the plume location.
Although our interest here is in minimizing uncertainty in
the plume location, existing work in both areas is relevant
to our investigation. In several previous studies, monitoring
well locations and sensor types were specified heuristically,
and the post-history matching uncertainty reduction for each
scenario was assessed [4, 5, 14, 25]. This procedure can be
iterated manually to achieve further reduction in expected
posterior uncertainty. Optimal experimental design has also
been applied in this setting [11, 26]. Particle swarmoptimiza-
tion (PSO) was used in [3] to find the optimum monitoring
well locations that minimized the uncertainty in a particu-
lar metric. However, in order to reduce computational costs,
samples were drawn from a set of prior results instead of
being generated through history matching. A more formal
approachwas presented in [21],wheremonitoringwellswere
placed such that a metric quantifying posterior uncertainty
was minimized.

In this work, we combine ideas from some of the stud-
ies noted above to define an overall monitoring and history
matching framework. The locations of a predefined number
and type of monitoring wells are optimized using a variant
of the procedure presented in [21]. This requires the simu-
lation of an ensemble of prior models intended to capture

the range of prior geological uncertainty. Then, under the
assumption ofGaussian prior and posterior flow statistics, the
optimal monitoring well locations can be determined with-
out conducting additional simulations. The objective of the
monitoring well optimization is to maximize the degree of
uncertainty reduction in a quantity related to plume location.
Once the storage project is in operation, history matching
(ES-MDA) is performed using pressure and saturation mea-
surements from the monitoring wells. The framework is
applied to models based on those for a storage operation
being planned for Illinois, USA [17]. The performance of
the methodology will be demonstrated for different synthetic
‘true’ models and different injection strategies.

This paper proceeds as follows. In Section 2, we describe
the computational approaches for monitoring well optimiza-
tion and history matching. Next, in Section 3, the aquifer
model used in this study is presented. Numerical results
are then provided for several cases, and the reduction in
uncertainty achieved using optimized monitoring well loca-
tions is compared to that using heuristic designs. Finally, in
Section 4, we summarize our findings and give suggestions
for future work in this area.

2 Optimization of monitoring well locations
and history matching procedure

Our goal in this study is to maximize uncertainty reduction
in carbon storage operations by applying history matching
using data frommonitoring wells. The amount of uncertainty
reduction that can be achieved is dependent on the number
of monitoring wells, their locations, and the type of data they
provide. A key challenge in this setting is that the permit-
ting procedure requires a monitoring plan to be established
before any CO2 is injected, and thus before any flow data are
collected. This means that one or more monitoring well loca-
tionsmust be determined based only on a prior understanding
of the subsurface geology.

The workflow applied here is illustrated in Fig. 1. This
framework involves two steps –monitoringwell optimization
and history matching. We assume that all monitoring wells
are drilled prior to injection. Thus the two steps, which will
now be described, are sequential. The procedure could be
modified to include the addition of monitoring wells during
the injection stage, but this is not considered here.

2.1 Monitoring well location optimization

In this work, the monitoring scheme is optimized using a
modified version of the strategy described in Sun andDurlof-
sky [21]. In that study, a data-space inversion procedure was
applied, and the goal was to provide posterior data predic-
tions, e.g., CO2 plume location at a particular time. Here our
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Fig. 1 Workflow forCO2 monitoring and historymatching.Monitoring
well locations are determined in the first step, and history matching is
then performed as CO2 is injected over time

goal is to construct posterior (history matched) geomodels.
The monitoring well optimization step, however, is essen-
tially the same regardless of whether the history matching
entails a data-space or a model-based procedure.

The vector containing the uncertain aquifer model param-
eters is represented bym ∈ R

Nm×1. Here Nm = 2Nb, where
Nb is the number of grid blocks in the geomodel. The twogeo-
logical parameters in each grid block correspond to porosity
and permeability. Only a single value is required for perme-
ability because we set kx = ky and take kz = αkx , where
α is a specified parameter (here kx , ky , and kz denote direc-
tional permeabilities). The aquifer models in this work are
based on those in Okwen et al. [17], in which porosity and
permeability are uncorrelated. Thus, we do not prescribe any
correlation between these two sets of parameters in the mod-
els used here.

The forward simulation model is represented as

d f = g(m), (1)

where g denotes the flow simulation and d f ∈ R
N f ×1 repre-

sents simulation results.Our intent is to determine theoptimal
monitoring well locations such that, at a prescribed (future)
time, the uncertainty reduction in a quantity of interest (QoI)
will be maximized. For specificity, here this QoI is a measure
of the plume extent after 20 years of CO2 injection. Data up
to this time are referred to as ‘historical’ data (even though no
data have yet been collected) and are denoted bydh ∈ R

Nh×1,
where Nh is the number of observations. Data corresponding
to the QoI are denoted dp ∈ R

Np×1, where Np is the number
of QoI. The data vector d f can be viewed as a concatenation
of these two sets of data, i.e., d f = [dTh ,dTp ]T .

We proceed by first simulating a set of Nr prior geologi-
cal models, intended to represent our prior knowledge of the
subsurface. In this study we set Nr = 350. This will pro-
vide a large set of prior data vectors – specifically, (d f )i ,
i = 1, . . . , Nr , each of which is comprised of (dh)i and

(dp)i , i = 1, . . . , Nr . The goal of the first-stage optimiza-
tion is to determine the monitoring well locations such that
themeasured data,when used for historymatching,minimize
an appropriate metric over the set of prior models.

Monitoringwells are assumed to extend vertically through
the entire storage aquifer, with areal locations defined by
their (i, j) locations on the simulation grid.Monitoringwells
can contain multiple transducers, each of which provides
pressure data, along their length. We denote the number of
pressure transducers on each well by Nt , and treat each trans-
ducer as if it is located in the center of the grid block. Each
monitoring well is thus defined by 2 + Nt design variables
(i and j areal locations and Nt vertical locations). The full
set of Nw monitoring wells is denoted by y ∈ N

Ny×1, where
Ny = Nw × (2 + Nt ).

In our setup, the goal is to maximize uncertainty reduction
in a plume-location metric after 20 years of injection. We
assume that pressure data are measured every 3 months at
the pressure transducer locations, and that CO2 saturation is
measured along the monitoring well once per year. This is
accomplished in practice using a saturation logging tool [8].

The actual observations will contain error due to impreci-
sion in themeasurements, along withmodel error, though the
latter may be difficult to quantify. We denote the observed
data as dobs ∈ R

Nh×1, with ε ∈ R
Nh×1 the measurement

error. Here ε is assumed to be normally distributedwithmean
0 and covariance CD ∈ R

Nh×Nh .
Strandli et al. [20] cited a pressure measurement error

of about 1 kPa (0.001 MPa), while Sun and Durlofsky [21]
applied a pressure error of 0.1 MPa, which includes some
amount ofmodel error. The latter study used a saturation error
of 0.02. Here we use a pressure error of 10.34 kPa (1.5 psi),
which is between those used in [20] and [21], and a saturation
error of 0.02, as in [21]. The model error contribution could
be adjusted in cases where this component can be accurately
quantified.

The dp portion of d f in our case corresponds to a scalar
QoI, which will be used in the monitoring well optimiza-
tion problem (note the QoI must be a scalar quantity in our
optimization framework). Here this quantity is the volume of
CO2 beyond a given target region after 20 years of injection.
The target region here is taken to be a volume corresponding
to n×n×n p blocks around the injection well(s). Here n = 5
or 7, and n p is the number of layers in which the well is per-
forated. Further details (and illustrations) will be provided in
Section 3.

This QoI, now denoted by J , is given by

J =
∑

i /∈TR
viφi Si , (2)

where i denotes a grid block, the sum is over all blocks out-
side the target region (TR), vi is the bulk volume of cell i , φi

123



Computational Geosciences

is the porosity of cell i , and Si is the CO2 saturation in cell
i . The goal of the monitoring well optimization is to locate
the monitoring wells such that the expected variance in J
(over the set of Nr realizations), conditioned to the measure-
ment data, is minimized. This acts to increase our knowledge
regarding the plume extent after the 20-year time frame.

The optimization problem can be expressed as

yopt = argmin
y

[∫ ∫
σ 2
J |dobs(m,y,ε) p(m)p(ε)dmdε

]
, (3)

where yopt denotes the optimum monitoring locations and
σ 2
J |dobs (m,y,ε) is the posterior variance of J , given measured

data dobs(m, y, ε). Assuming that multivariate Gaussian
statistics are preserved in the data space, Sun and Durlof-
sky [21] showed that the integral in Eq. 3 can be expressed
as

∫ ∫
σ 2
J |dobs(m,y,ε) p(m)p(ε)dmdε

= σ 2
J J − CJdh (Cdhdh + CD)−1Cdh J , (4)

where the covariances are determined from the simulation
results over the Nr prior models. The specific computations
are

σ 2
J J = 1

Nr − 1

Nr∑

i=1

(Ji − μJ )
2, (5)

CJdh = CT
dh J = 1

Nr − 1

Nr∑

i=1

(Ji − μJ )
[
(dh)i − μdh

]
, (6)

Cdhdh = 1

Nr − 1

Nr∑

i=1

[
(dh)i − μdh

] [
(dh)i − μdh

]T
, (7)

where Ji and (dh)i represent the simulated QoI value and
monitoring well data (at locations defined by y) for prior
model i . Furthermore, μJ and μdh denote the prior means
over the Nr models in the ensemble.

Combining Eqs. 3 and 4 gives

yopt = argmin
y

[
σ 2
J J − CJdh (Cdhdh + CD)−1Cdh J

]
. (8)

The covariance terms depend on the monitoring well loca-
tions y, but the variance σ 2

J J does not depend on y because
the QoI values for the prior models are not affected by the
monitoring plan. This allows the optimization problem to be
rewritten as

yopt = argmin
y

[
1 − CJdh (Cdhdh + CD)−1Cdh J

σ 2
J J

]
, (9)

where the entire fractional term can be interpreted as a mea-
sure of expected uncertainty reduction in J given the data
measured at the monitoring well locations defined by y. As
discussed in [21], this overall approach is still applicable
(though more approximate) in cases where the flow statistics
are non-Gaussian.

The optimization problem given in Eq. 9 is solved using a
genetic algorithm formulated in a Python environment. The
optimization requires only prior simulation data. This means
that, once the Nr prior realizations are simulated, no addi-
tional flow computations need be performed for the design
of the monitoring strategy.

2.2 History matching procedure

We now describe the approach used for history matching.
The observed data considered in the historymatching step are
those measured by the (optimized) monitoring wells. In this
work, the ‘true’ data derive from a selected synthetic ‘true’
model that is consistent with the prior ensemble (but it is not
one of the Nr models used formonitoringwell optimization).
Ensemble smoothing with multiple data assimilation (ES-
MDA), introduced by Emerick & Reynolds [7], is applied.
Specialized treatments such as localization are not used in
this work.

In ES-MDA, at each of the Na data assimilation steps, we
apply

mk+1
i =mk

i +Ck
mdh (C

k
dhdh +αkCD)−1

[
dkpert,i − dkh,i

]
, (10)

for i = 1, . . . , Nr and k = 1, . . . , Na . Here mk+1
i repre-

sents updated geomodel i (mk
i is the model at the previous

assimilation step), dkh,i contains the simulation results for

model i at step k, and the covariance matrices Ck
mdh

and

Ck
dhdh

are computed at each step. The vector dkpert,i denotes

(perturbed) observation data, sampled from dkpert,i = dobs +√
αkC

1/2
D zkd,i , where αk is the ES-MDA inflation param-

eter, CD is the data covariance, and zkd,i ∼ N (0, I ). In
this work, we set Na = 4 and αk = 4 at all assimilation
steps.

The ES-MDA procedure requires a total of Nr × Na sim-
ulation runs. Thus the computational demands for this step
are substantial. The final set of history matched models,mi ,
i = 1, . . . , Nr , generated after assimilation step 4, are used to
provide predictions for any QoI. They can also be applied to
evaluate or optimize storage aquifer performance under new
conditions (e.g., increased injection rates, the introduction of
additional injection wells).
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3 Computational results

In this section,we first present the aquifermodel and problem
setup. The workflow described in Section 2 is then applied
to two different injection scenarios. For each scenario, two
different true models are considered. The first scenario
(Section 3.2) involves a single injection well, while the sec-
ond scenario (Section 3.3) involves two injection wells, with
the second well starting injection 5 years after the first well.

3.1 Aquifer model

The models and problem setup in this work are based on
the study by Okwen et al. [17]. That work entailed a fea-
sibility assessment for a carbon storage project in central
Illinois, USA, with CO2 injected into the Mt. Simon forma-
tion.Aspects of the problem specification have beenmodified
in this work, including the injection well location, injection
rate, and simulation time frame. In our model the storage
aquifer extends 16.15 km × 16.46 km areally. It is 1.14 km
thick, with this thickness including the confining shale layer.
The models are represented on a 40 × 40 × 40 grid, with
cells of dimension 403.9 m × 411.5 m × 28.6 m. The size
of the grid blocks and the level of resolution in these mod-
els are certainly less than ideal. In particular, the grid is too
coarse to resolve detailed CO2 plume evolution or complex
multiphase flow physics. This is not a major concern here
since our goal is to illustrate the overall methodology. In a
practical application, it would be appropriate to introduce
grid refinement, particularly in the region around the injec-
tion and monitoring wells. In addition, the incorporation of
properly upscaled geomodels, and/or errormodels developed
to correct for unresolved physics, would be useful.

The models contain six geological layers (one of these is
the confining shale layer) and are constructed through Carte-
sian ‘mappings’ ofmore complexmodels definedon irregular
grids. The topological structure of the layers defined in [17]
is preserved in the mapping, though this treatment requires
cells above the shale and below geological layer 6 to be deac-
tivated. A geological realization of the system (geostatistical
parameters are given below) is shown in Fig. 2. The zero-
valued regions in this figure represent the inactive cells.

The initial pressure of the aquifer is 20.07 MPa at a depth
of 1750 m. We specify a maximum bottom-hole pressure
(BHP) for the injectors of 27.63 MPa. According to [17],
the Environmental Protection Agency (EPA) stipulates that
the maximum BHP of a Class VI injection well can be at
most 90% of the formation fracture pressure. At the target
injection depth of 1750 m for the Mt. Simon formation, this
criterion corresponds to a maximum BHP of 29.14 MPa.
Thus our specified maximum of 27.63 MPa is well within
the acceptable range. Consistent with [17], no additional
aquifer support is introduced into the models. The highest

Fig. 2 Porosity field for a prior realization. The region above the con-
fining shale layer is inactive. Vertical exaggeration applied

BHP actually reached (in all runs) remained below the spec-
ified maximum, indicating the pore volume of the models is
sufficiently large for the volume of CO2 injected.

The system is isothermal (with a temperature of 50.3◦C)
and initially contains only brine, of density 1150 kg/m3.
Simulations are performed using Eclipse [19] with the
CO2STORE option. This simulator has preset models for the
mutual solubility and fluid properties of CO2 and brine. The
gas-water relative permeability curves, which correspond to
one of the scenarios considered by Okwen et al. [17], are
shown in Fig. 3.

Permeability and porosity in all layers of themodel, except
for the confining shale layer, are taken to be uncertain. For
the shale layer (layer 1), we specify a constant permeabil-
ity of 0.045 md and a constant porosity of 0.046. Porosity
and log-permeability realizations for the other five layers are
generated through application of Gaussian sequential simu-
lation. Realizations are constructed independently for each
geological layer using the SGeMS toolbox [18]. The geo-
logical layers are then stacked to create the full realization.
We proceed in this manner because the layers are geolog-
ically distinct and are characterized by different statistical
distributions.

Fig. 3 Relative permeability curves for CO2 and brine
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The mean (μ) and standard deviation (σ ) for the log-
permeability and porosity in each layer are provided in
Table 1. The models are all generated using an ellipsoid-
shaped exponential variogrammodel. The correlation lengths
in the x , y, and z-directions (lx , ly , lz) for each layer are also
given in Table 1. Consistent with the actual modeling of this
formation, we specify kx = ky and kz = 0.12kx for all cells.
A total of Nr = 350 prior geological models are constructed.
Two prior realizations are shown in Fig. 4 (loge kx for x-z
cross sections is displayed).

The geomodels are not conditioned to hard data at the well
locations. Although it would be appropriate to introduce this
conditioning in practice (after accounting for the difference
in scale between the hard data and the grid blocks), it is some-
what involved to do this within the context of this study. This
is because we will consider several different monitoring well
configurations, which means the conditioning would be dif-
ferent in each case. This would complicate both theworkflow
and the comparisons between the different monitoring well
strategies.

3.2 Injection scenario 1

In the first injection scenario, we consider a single vertical
well, located in the center of the model. This well injects at a
rate of 2.0 Mt/yr of CO2 over a 20-year period. The injection
well is perforated in the two lowermost cells in geological
layer 4, in the two cells in geological layer 5, and in the
uppermost cell of layer 6. As noted earlier, in all simulation
runs (for prior and posterior realizations and truemodels), the
injection-well BHP never exceeds the maximum allowable
value of 27.63MPa, indicating that pressure buildup remains
within an acceptable range.

Any number of wells can be considered for monitoring,
though economic considerations will limit their number in
practice. Here we consider two vertical monitoring wells.
These wells are assumed to measure saturation at every
cell along their depth once per year, as well as pressure
at three depths every 3 months. The optimization variables

Table 1 Geostatistical parameters for each geological layer

Layer μφ σφ μlog k σlog k lx ly lz

2 0.117 0.039 2.223 2.332 24 24 4

3 0.096 0.018 1.061 2.631 21 22 3

4 0.102 0.016 1.690 1.173 29 30 4

5 0.215 0.040 4.641 1.994 26 23 1

6 0.123 0.043 2.540 2.667 25 24 2

Layer 1 (shale layer) is not shown because these properties do not vary.
Log properties are loge kx in md. Correlation lengths are in number of
grid blocks in the corresponding direction. Mean values for each layer
are from [17]

thus include, for each well, an x (i) location, a y ( j) loca-
tion, and three vertical (k) pressure transducer locations (thus
Ny = 10).

The QoI J , for which we seek to minimize posterior
uncertainty, is the CO2 volume beyond the cells forming
a 7 × 7 × 5 target region centered around the injection
well perforations. In qualitative terms, we wish to find the
monitoring well locations that best quantify (after history
matching) the volume of CO2 that is outside this region
after 20 years of injection. The target region is shown in
gray in Fig. 5. To compute the objective function, we apply
Eq. 2 for each realization. The goal of the monitoring well
optimization is to minimize the variance of J over all Nr

realizations.
A genetic algorithm, with a population of 100 individuals,

is used for the optimization defined in Eq. 9. The optimiza-
tion proceeds for 150 generations (iterations). The resulting
optimum locations for the two monitoring wells are shown
in Fig. 5 (the injection well location is also displayed). The
optimization leads to a remaining variance of 0.0709. This
value corresponds to the argument of Eq. 9 evaluated for the
optimal monitoring well configuration. Note that the moni-
toringwells are located in blocks adjacent to the injector. The
pressure transducers are placed above and below the injector
perforations.

We will compare the performance of the optimal mon-
itoring scheme shown in Fig. 5 to that of other (heuristic)
monitoring well configurations. Three such qualitative con-
figurations are considered. These cases are displayed in Fig. 6
along with the injection well and optimal monitoring well
locations.

In Case 1, the monitoring wells are placed where the vari-
ance in the prior results is a maximum. Here variance is
computed in both saturation and pressure for each cell at
each time step, over all Nr = 350 prior simulation runs. The
normalized pressure and saturation variances are combined
with equal weighting. The (i, j) locations for the monitoring
wells, along with the corresponding depths for the pressure
transducers, are then determined such that the variance is
maximized. In the case of two or more monitoring wells,
this procedure is repeated to find the next (i, j) location
and corresponding depths. Note that this approach, although
quantitative in character, does not account for the specific
QoI (J ). In Cases 2 and 3, the monitoring wells are located
just outside the target region, in different configurations. For
these cases, the pressure transducer depths are taken to be
the same as in the optimal configuration.

We can directly evaluate the argument of Eq. 9 for each
of the three heuristic cases. The remaining variance is, for
Cases 1–3, 0.0784, 0.6912, 0.6508, respectively. These val-
ues are all greater than that for the optimum configuration
(0.0709), though Case 1 (based on prior variance) is compa-
rable to the optimum.Wemight thus expect this configuration
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Fig. 4 Two prior realizations of
log-permeability for x-z cross
sections

(a) Realization 2 (b) Realization 214

Fig. 5 Optimal monitoring well
configuration. Injection well
location and perforations also
shown (injection scenario 1).
Gray shaded blocks indicate
target region

(a) Top view of optimum monitoring wells (b) Cross-sectional view of optimum monitoring wells

Fig. 6 Monitoring well
locations for various qualitative
(heuristic) schemes. Optimal
configuration and injection well
also shown (injection
scenario 1). Gray shaded blocks
indicate target region

(a) Case 1 – monitoring wells where variance in the prior
results is maximum

(b) Case 2 – monitoring wells on either side of the target
region

(c) Case 3 – monitoring wells near one another outside the
target region
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(a) True model 1 (b) True model 2

Fig. 7 Cross-sectional view of CO2 plume (along x = 19) after 20 years of injection for both true models (injection scenario 1).White line indicates
the injection well

to perform better than the other two cases in terms of the
uncertainty reduction achieved via history matching.

We now apply history matching using the data provided
by the monitoring wells over the 20-year injection period.
As this study involves synthetic models, the data here derive
from the simulation of a ‘true’ model. This model is a new
geological realization that is consistent with the prior ensem-
ble but was not included in the monitoring well optimization.
We will consider two such true models (in turn).

ES-MDA is applied (separately) using data from the opti-
mal monitoring scheme and from each of the three heuristic
monitoring scenarios. A cross-sectional y-z view (through
x = 19, where x here refers to the grid index) of the CO2

plume for true model 1, after 20 years of injection, is shown

in Fig. 7a. Note that this cross-section contains the injector,
which is indicated in the figure.

After performing history matching using observed data
from true model 1, the volume of CO2 beyond the target
region for each of the 350 posterior models is computed.
Empirical cumulative distribution functions (CDFs) for this
quantity, computed over the 350 posterior models for each
monitoring scheme, are shown in Fig. 8a. The dashed vertical
line (at a J value of 3.27× 106 m3) indicates the true-model
result. The red curve depicts the prior CDF (before any data
assimilation is performed). The blue curve shows the poste-
rior CDF for the optimal monitoring well configuration, and
the other curves correspond to the qualitativemonitoring sce-
narios.

(a) True model 1 (b) True model 2

Fig. 8 CDFs for CO2 volume beyond the target region (J ). The red
curve is the prior, blue curve is the posterior for the optimal moni-
toring scheme, and the other solid curves are posteriors for heuristic

monitoring schemes. The vertical dashed line is the J value for the
corresponding true model (injection scenario 1)
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Fig. 9 CO2 plumes in x = 19
cross-section after 20 years of
injection for nine randomly
chosen prior realizations
(injection scenario 1)

(a) Realization 67 (b) Realization 249 (c) Realization 230

(d) Realization 161 (e) Realization 91 (f) Realization 224

(g) Realization 58 (h) Realization 234 (i) Realization 180

In this figure, the width of each CDF corresponds to the
degree of uncertainty in J . The prior is very broad, indicating
high initial uncertainty. We see that the blue curve, which
depicts the CDF for the posterior of J after history matching
using data from the optimum monitoring well configuration,
is relatively narrow and is centered around the true result.

This is precisely as desired, and indicates that the history
matchinghas successfully reduceduncertainty in the quantity
of interest (J ). In Fig. 8awe also see that the heuristic scheme
based on prior variance (Case 1) leads to a posterior CDF that
is close to that for the optimumconfiguration. The other cases
provide less uncertainty reduction. This illustrates the strong

Fig. 10 CO2 plumes in x = 19
cross-section after 20 years of
injection for nine posterior
realizations. Observed data are
from the optimum monitoring
well configuration (true
model 1, injection scenario 1)

(a) Realization 67 (b) Realization 249 (c) Realization 230

(d) Realization 161 (e) Realization 91 (f) Realization 224

(g) Realization 58 (h) Realization 234 (i) Realization 180

123



Computational Geosciences

(a) Realization 67 (b) Realization 249 (c) Realization 230

(d) Realization 161 (e) Realization 91 (f) Realization 224

(g) Realization 58 (h) Realization 234 (i) Realization 180

Fig. 11 CO2 plumes in x = 19 cross-section after 20 years of injection for nine posterior realizations. Observed data are from the optimum
monitoring well configuration (true model 2, injection scenario 1)

effect that the locations of the monitoring wells have on the
quality of posterior predictions.

We next consider prior and posterior simulation results for
CO2 plume location. This is an essential quantity in any data
assimilation workflow in a CCUS setting. Figure 9 displays
the CO2 plume saturations after 20 years of injection for nine
randomly selected prior realizations. These figures again cor-
respond to cross-sections through x = 19, as in Fig. 7a.There
is clear variability in the shape and extent (vertical and lat-
eral) of these plumes, consistent with the broad prior CDF
in Fig. 8a. Plumes corresponding to posterior models are
shown in Fig. 10. These plumes are clearly more consistent
in size and shape than those in Fig. 9. More importantly,
they are visually similar to the true-model plume shown in
Fig. 7a.

Wenowpresent posterior results for a different truemodel.
Note that the monitoring well optimization and associated
simulations do not need to be repeated, as these involve only
priormodels andnoobserveddata. TheCO2 plume saturation
for true model 2 is shown in Fig. 7b. The prior and posterior
CDFs for this case are presented in Fig. 8b. Note that the true
J value is now larger than it was for true model 1 (here it
corresponds to the 81st percentile on the prior CDF compared
to the 52nd percentile for true model 1). For this true model,
the optimal monitoring well configuration clearly provides
the most uncertainty reduction. Of the heuristic monitoring
schemes, Case 1 again performs the best. The CO2 plumes

for the posterior models, for the optimal monitoring well
scenario, are shown in Fig. 11. These plumes again resemble
the true-model result (Fig. 7b) and they display less variation
than the plumes corresponding to prior realizations shown in
Fig. 9.

The application of ES-MDA provides an ensemble (Nr =
350) of posterior geomodels and corresponding simulation
results. These results can be used to provide possible future
plume migration scenarios conditioned to the data mea-
sured at the monitoring wells. As an example, time-evolution
results for a particular posterior realization from the true
model 2 example, with data collected at optimally located
monitoring wells, are displayed in Fig. 12. In this case, we
continue injecting CO2 for an additional 30 years. The satu-
ration field is again for the x = 19 cross-section.

From the full history matched ensemble we can com-
pute, e.g., average behavior, the expected lateral extent of the
plume, the probability that the plume will migrate a specific
distance in a particular direction at a given time, etc. Thus
these results can be very useful for aquifer management and
risk assessment.

3.3 Injection scenario 2

We now consider a second injection scenario. A more lim-
ited set of results will be presented for this scenario than
for injection scenario 1, as the goal here is to illustrate the
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(a) 20 years (b) 30 years

(c) 40 years (d) 50 years

Fig. 12 CO2 plumes in x = 19 cross-section for posterior realization 42 at later times. CO2 is injected in this case for 50 years. Observed data are
from the optimum monitoring well configuration (true model 2, injection scenario 1)

Fig. 13 CO2 plumes in x = 19
cross-section after 20 years of
injection for nine randomly
chosen prior realizations
(injection scenario 2)

(a) Realization 67 (b) Realization 249 (c) Realization 230

(d) Realization 161 (e) Realization 91 (f) Realization 224

(g) Realization 58 (h) Realization 234 (i) Realization 180
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Fig. 14 Optimal monitoring
well configuration. Injection
well location and perforations
also shown (injection
scenario 2). Gray shaded blocks
indicate target region

(a) Top view of optimum monitoring wells (b) Conceptual cross-sectional view of optimum monitor-
ing wells

applicability of the framework in a range of settings. This sce-
nario involves two vertical injection wells, with both wells
injecting 2.0MtCO2/yr. The first injector operates at this rate
for the full 20-year period, while the second begins injection
after 5 years. The maximum injection-well BHP is specified
as 27.63 MPa for each well (this is the same value used in
injection scenario 1).

We again consider a strategy with two vertical monitoring
wells, each with three pressure transducers. Pressure data at
each transducer are collected every three months and satura-
tion data are measured once per year along the well (at each
grid block). The objective function, J , is analogous to that
used for injection scenario 1. In this case it is defined as the
CO2 volume beyond n × n × n p regions around the perfo-
rated portion of each injector. Here we set n = 5. The target
region now entails all gray-shaded blocks in Fig. 13.

The prior flow simulations must be rerun, as the injec-
tor locations and rate schedules are different in this sce-
nario. The setup is otherwise identical to that described in

Section 3.2. Prior flow simulation results for nine realiza-
tions are shown in Fig. 13. The two separate plumes for this
case are clearly evident. The monitoring optimization is also
rerun, again with the same specifications as were used pre-
viously.

The optimized monitoring well locations, along with the
injection wells, are displayed in Fig. 14. The monitoring
wells are placed close to each of the injectors. In injection
scenario 1, the optimal monitoring wells were aligned with
the y-axis (Fig. 5a), which allowed for direct visualization
of the pressure transducer depths (Fig. 5b). However, for
this injection scenario, the monitoring wells are not aligned
along either the x or y axis (as is evident in Fig. 14a). There-
fore, in order to display the pressure transducers, we plot
them in Fig. 14b along a ‘conceptual’ cross section that runs
through both injectors and both monitoring wells. For this
optimized plan, the remaining variance corresponding to the
argument in Eq. 9 is 0.2351. Note that this value is larger
than in injection scenario 1 (where it was 0.0709), which is

Fig. 15 Monitoring well
locations for various qualitative
(heuristic) schemes. Optimal
configuration and injection
wells also shown (injection
scenario 2). Gray shaded blocks
indicate target region

(a) Case 1 – monitoring wells where variance in the prior
results is maximum

(b) Case 2 – monitoring wells outside of both portions of the
target region

(c) Case 3 – monitoring wells between the two portions of
the target region
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Fig. 16 CDFs for CO2 volume beyond the target region (J ). The red
curve is the prior, blue curve is the posterior for the optimal moni-
toring scheme, and the other solid curves are posteriors for heuristic

monitoring schemes. The vertical dashed line is the J value for the
corresponding true model (injection scenario 2)

likely due to the added complexity from having two injection
wells rather than one.

Three heuristic monitoring plans are again considered.
These are shown, along with the injection wells and optimal
monitoring well locations, in Fig. 15. Case 1 again corre-
sponds to placing monitoring wells where the variance in
the prior results is the largest. In this case the monitoring
wells are both positioned near one injection well (the well
that begins injecting at the start of the operation).

For Cases 2 and 3, the x-y locations for the monitoring
wells are shifted relative to the optimum, but the vertical
locations of the pressure transducers are the same as in the
optimum strategy. The remaining variance (from Eq. 9) for
Case 1 is 0.3512, which is further from the optimal value
than in injection scenario 1. For Cases 2 and 3, the remaining
variance is larger, 0.6128 and 0.5023, respectively.

We now present posterior results for the same two true
models as were used in Section 3.2. For each true model and
monitoring scheme, ES-MDA is applied with data collected
over the 20-year period. Results for the different monitoring
schemes are shown in Fig. 16. The curves are as described
earlier, and the dashed line denotes the true value. Note that
the J values are consistently larger here than in injection sce-
nario 1. This is due to the additional 2.0 Mt CO2/yr injected
into the system (starting after 5 years), and also to the smaller
target region around each injector (5×5 areally versus 7×7).

For true model 1 (Fig. 16a), all of the monitoring schemes
achieve a reasonable degree of uncertainty reduction, though
the optimal scheme clearly provides the most narrow pos-
terior CDF. There is more difference between the optimal
scheme and Case 1 for this injection scenario than for injec-
tion scenario 1 (compare Figs. 16a and 8a). For true model 2
(Fig. 16b), the optimal strategy again outperforms the other
monitoring schemes. TheCase 1 posterior CDF is close to the

optimal, while the other two heuristic strategies show larger
differences. Note that true model 2 corresponds to a lower
percentile on the prior CDF for J than true model 1 for this
injection scenario. This is in contrast to injection scenario 1
(Fig. 8).

3.4 Comparison of posterior variance assessments

As discussed in Section 2.1, the monitoring optimization
strategy used in this study is strictly applicable when the
simulated flow data followmulti-Gaussian distributions. The
data for complex, nonlinear multiphase flow systems do not,
however, follow this distribution, even if the input geomod-

Fig. 17 Cross-plot of posterior variance in J in the history matched
models versus estimated posterior variance in J under Gaussian-data
assumption, for both injection scenarios and all monitoring schemes.
The σ 2

hm results are averages over true models 1 and 2. The 45◦ line is
also shown
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els are themselves multi-Gaussian. Thus, it is of interest to
compare the actual uncertainty reduction achieved through
ES-MDA-based history matching to that estimated from the
argument of Eq. 9. This assessment can be performed for
the various monitoring schemes and injection scenarios. One
caveat is that Eq. 9 provides an estimate over all possible
true models (assuming the prior ensemble is representative),
while the history matching results in this study involve only
two different true models.

In Fig. 17, we present a cross-plot between the esti-
mated posterior variance in J (from Eq. 9), denoted σ 2

est , and
the posterior variance in J actually observed in the history
matched models, denoted σ 2

hm . Here σ 2
hm is the average of

the results for true models 1 and 2. Results are displayed
for all monitoring schemes with both injection scenarios.
Two notable features are evident. First, the trend/ordering
is consistent between the two sets of results. This suggests
that different monitoring strategies can be (at least approxi-
mately) rankedbyevaluatingσ 2

est ,which is useful because the
computation of σ 2

est requires only prior-model simulations
(not history matching). The second observation is that the
history matched results consistently lie below the 45◦ line.
This is consistent with theory, since the Gaussian estimate is
known to provide an upper bound for posterior variance in
caseswhere the data are non-Gaussian [21]. It is also possible
that some of this discrepancy is due to the under-estimation
of posterior uncertainty byES-MDA.This effect, particularly
in the absence of localization, has been discussed in previous
studies (e.g., [15]) and may be occurring in our results. A full
understanding of the shift evident in Fig. 17 will, however,
require further investigation.

4 Concluding remarks

In this study, we presented a framework for optimally mon-
itoring and history matching a CO2 storage project. The
workflow involves the determination of the optimal monitor-
ing well locations based on simulations of prior realizations,
followed by the application of history matching as data are
collected. The monitoring well optimization step is essen-
tially that presented in [21], though history matching here
is performed in a model-based (rather than data-space) set-
ting using ES-MDA. The framework was applied to a system
representative of a CO2 storage project under study for
the Mt. Simon formation in Illinois, USA. An efficient
remapping algorithm was used to represent the underlying
unstructured model on a coarser Cartesian grid.

Results were presented for two different injection scenar-
ios and two true models. In the first injection scenario, a
single well operated for a 20-year period, while the second

scenario involved twoCO2 injectors. The truemodels in each
case were consistent with the prior ensemble and provided
the (synthetic) observations used for data assimilation. His-
tory matching using data from optimally located monitoring
wells was shown to provide more uncertainty reduction than
was achieved using heuristic monitoring plans, though the
advantage was relatively slight in some cases.

In contrast to the data-space approach in [21], the work-
flow here provides an ensemble of posterior models. These
can be used to assess average or outlier plume evolution
scenarios, analyze commonalities and differences in history
matched geomodels, etc.

There are many directions that should be pursued in future
work in this area. Themodels in this studywere defined on 40
× 40 × 40 grids. Models of these dimensions are too coarse
to resolve detailed CO2 saturation distributions, so higher
grid resolution will be required in practice. This could be
achieved through use of locally refined models, with high
resolution near injection and monitoring wells. Error mod-
eling procedures, in which errors due to grid resolution are
quantified based on simulation results from selected pairs of
fine and coarse-scale models, could also be effective. The
use of deep-learning-based surrogate models, such as those
described in [23, 24], should also be considered. The impact
of additionalmonitoringwells, and/or the effect ofmeasuring
datamore frequently, should be studied. This could be treated
in a multiobjective optimization setting where the objec-
tives are tomaximize uncertainty reductionwhileminimizing
monitoring cost. Other data types, particularly geophysical
measurements, could be included in the history matching
step. Additional physics, such as geomechanical effects,
can be incorporated into the overall workflow. Finally, the
methodology should be generalized to optimize new moni-
toring wells placed after the start of CO2 injection.
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