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a b s t r a c t 

Numerical simulation is an essential tool for many applications involving subsurface flow and transport, yet often 

suffers from computational challenges due to the multi-physics nature, highly non-linear governing equations, 

inherent parameter uncertainties, and the need for high spatial resolutions to capture multi-scale heterogeneity. 

We developed CCSNet, a deep-learning modeling suite that can act as an alternative to conventional numerical 

simulators for carbon capture and storage (CCS) problems well-represented by a 2D radial grid, for example, 

injection into an infinite acting saline formation with no or very small dip. CCSNet consists of a sequence of deep 

learning models producing all the outputs that a numerical simulator typically provides, including saturation 

distributions, pressure buildup, dry-out, fluid densities, mass balance, solubility trapping, and sweep efficiency. 

The results are 10 3 to 10 4 times faster than conventional numerical simulators. As an application of CCSNet 

illustrating the value of its high computational efficiency, we developed rigorous estimation techniques for the 

sweep efficiency and solubility trapping. 

1

 

s  

t  

2  

fi  

c  

P  

l  

t  

f  

i  

r  

h  

a  

p  

s  

e  

R  

2

 

fl  

t  

s  

e  

2  

2  

S  

p  

g  

a  

a  

t  

s  

c  

2  

2  

v  

s  

a  

h  

t  

r  

d  

a  

i  

o  

w  

s  

e  

n  

h

R

A

0

. Introduction 

Multiphase flow in porous media is important for many sub-

urface flow and transport problems such as hydrocarbon produc-

ion ( Aziz, 1979 ) and carbon capture and storage (CCS) ( Pachauri et al.,

014 ). Numerical simulation is the primary tool used for predicting

eld-scale multiphase flow by solving spatially and temporally dis-

retized mass and energy balance equations ( Allen, 1985; Chierici, 1995;

ruess, 2005 ). However, numerical simulation for multiphase flow prob-

ems is computationally expensive due to the multiphysics problem na-

ure ( Khebzegga et al., 2020 ), highly nonlinear governing partial dif-

erential equations (PDEs) ( Orr et al., 2007 ), multiscale heterogeneity

n the permeability field ( Pini et al., 2012 ), and need for high spatial

esolution of the grids ( Doughty, 2010; Wen and Benson, 2019 ). The in-

erent uncertainty in the subsurface geology necessitates probabilistic

ssessments and history matching ( Kitanidis, 2015 ), which often require

rohibitively large numbers of simulation runs. To aid engineering deci-

ions, ‘surrogate’ models with lower fidelity but greater computational

fficiency are often developed for specific tasks ( Cardoso et al., 2009;

azavi et al., 2012; Bazargan et al., 2015; Hamdi et al., 2017; Tian et al.,

017 ). 

Here we propose a deep learning approach for solving subsurface

ow and transport problems with the fidelity of a traditional simula-

or and the speed of surrogate models or even faster. Unlike previous

urrogate methods that are often developed on a ‘task’ basis ( Cardoso

t al., 2009; Razavi et al., 2012; Bazargan et al., 2015; Hamdi et al.,
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017; Tian et al., 2017; Tang et al., 2020; Jin et al., 2020; Mo et al.,

019 ), Zhong et al. (2021) , we demonstrate a deep learning tool, CC-

Net, which can provide solutions to an entire class of multiphase flow

roblems, namely, CO 2 storage problems. CCS is a climate change miti-

ation technology that requires injection of supercritical CO 2 into saline

quifers for long term storage ( IEA, 2020 ). CCSNet can solve for nearly

ll realistic scenarios that entail injecting CO 2 into a 2d-radial system

hrough a vertical injection well ( Yamamoto and Doughty, 2011a ). In

uch systems, the complex interplay between capillary, gravity, and vis-

ous forces controls the migration of CO 2 ( Yamamoto and Doughty,

011b; Saadatpoor et al., 2010; Krevor et al., 2015a; Wen and Benson,

019 ). CO 2 migrates horizontally away from the injection well due to

iscous forces while rising upwards due to gravitational forces. Sub-

urface geological heterogeneity results in variations of permeability

nd capillary entry pressure ( Ide et al., 2007; Pini et al., 2012 ), which

ave a first-order effect on plume migration patterns, pressure buildup,

rapping, and sweep efficiency ( Wen and Benson, 2019 ). Meanwhile,

eservoirs conditions (e.g. temperature ( Al-Khdheeawi et al., 2018a ),

epth, salinity ( Al-Khdheeawi et al., 2018c )); rock properties (e.g. rel-

tive permeability Benson et al., 2013; Krevor et al., 2012 , wettabil-

ty ( Iglauer et al., 2015; Al-Khdheeawi et al., 2017a; 2017b ), mineral-

gy ( Al-Khdheeawi et al., 2021b; 2021a )); and injection designs (e.g.

ell configuration Al-Khdheeawi et al., 2017c , injection rate, injection

cenario ( Al-Khdheeawi et al., 2018b ), perforation interval) all influ-

nce the plume migration processes. Accurately modeling of these phe-

omena requires numerical simulations with high spatial and tempo-

al resolutions ( Pruess and Nordbotten, 2011; Doughty, 2010 ), making

igorous probabilistic assessments, optimization, and history matching

or CO 2 storage especially computationally intensive using conventional

umerical simulators. 
2021 
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Deep learning has recently shown a growing potential for applica-

ions to subsurface flow and transport problems ( Zhu et al., 2019; Jin

t al., 2020; Mo et al., 2019; Tang et al., 2020; Fuks and Tchelepi, 2020;

hong et al., 2021; Wen et al., 2021; Wu and Qiao, 2020; He et al., 2020;

iu and Grana, 2020; Jiang et al., 2021 ). Physics informed or physics

onstrained machine learning approaches encode governing PDEs in

he loss function and solve the problem through automatic differenti-

tion ( Zhu et al., 2019; Wu and Qiao, 2020; He et al., 2020; Haghighat

nd Juanes, 2021 ). To date, physics-informed machine learning mod-

ls have not been successful in providing accurate approximations for

yperbolic PDEs that govern most multiphase flow problems ( Fuks and

chelepi, 2020 ). Supervised learning approaches use data generated by

umerical simulators to train deep learning models: these have shown

ncouraging results for specific uncertainty quantification or history

atching tasks ( Mo et al., 2019; Tang et al., 2020; Zhong et al., 2019 ).

n fact, supervised learning models can represent any complicated re-

ationship given sufficient data and adequate training ( Haykin, 2010 )

nd we develop CCSNet based on this principle. We demonstrate in this

aper that deep learning tools have functionalities beyond merely used

s task driven surrogate models. Instead, CCSNet provides solutions to a

hole class of problems – in essence, for certain applications providing

 potential alternative to conventional numerical simulation. 

A major challenge for developing general-purpose tools for classes of

roblems is to design and create a training set that can fully represent

he problem domain. Here we train CCSNet with a data set contain-

ng highly resolved and full-physics numerical simulation outputs that

re representative of all realistic scenarios for 2d-radial CO 2 injection,

ncluding extensive ranges of reservoir conditions, fluid properties, ge-

logical attributes, rock properties, multiphase flow properties, and in-

ection designs. Fig. 1 A shows the sequence of convolutional neural net-

ork (CNN) models in CCSNet that collaboratively provide predictions

f salient outputs from conventional numerical simulators, namely, CO 2 
as saturation distribution, pressure buildups, the molar fractions of CO 2 
nd fluid densities for gas and liquid phases ( Pruess et al., 1999 ). The

ull set of outputs allows us to evaluate how well the results satisfy the

overning conservation equations without explicitly representing them

n the loss function. CCSNet is nearly as accurate as numerical simu-

ation for all realistic cases in the problem domain while being 10 3 to

0 4 times more computationally efficient. To demonstrate the value of

CSNet’s high computational efficiency, we used stochastic sampling

f the problem domains to develop an estimation technique for sweep

fficiency and solubility trapping, two of the important considerations

hen selecting sites for CCS projects. 

. Methodology 

This section describes the governing equations, training data set gen-

ration, model architecture, data configuration, and training strategy of

CSNet. 

.1. Governing equations 

For the CO 2 and water multiple-phase flow problem, the general

orm of mass accumulation for component 𝜅 = CO 2 or 𝑤𝑎𝑡𝑒𝑟 is written

s ( Pruess et al., 1999 ): 

𝜕𝑀 

𝜅

𝜕𝑡 
= −∇ ⋅ 𝐅 𝜅 + 𝑞 𝜅 , (1)

or each component 𝜅, the mass accumulation term 𝑀 𝜅 is summed over

hases 𝑝 , 

 

𝜅 = 𝜙
∑
𝑝 

𝑆 𝑝 𝜌𝑝 𝑋 

𝜅
𝑝 
, (2)

here 𝜙 is the porosity, 𝑆 𝑝 is the saturation of phase 𝑝 , 𝜌𝑝 is the density

f phase 𝑝 , and 𝑋 

𝜅
𝑝 

is the mass fraction of component 𝜅 presents in phase

 . For each component 𝜅, we also have the advective mass flux 𝐅 𝜅 |
𝑎𝑑𝑣 
2 
btained by summing over phases 𝑝 , 

 

𝜅 |𝑎𝑑𝑣 = 

∑
𝑝 

𝑋 

𝜅
𝑝 
𝐅 𝑝 (3)

here each individual phase flux 𝐅 𝑝 is governed by Darcy’s law: 

 𝑝 = 𝜌𝑝 𝐮 𝑝 = − 𝑘 
𝑘 𝑟,𝑝 𝜌𝑝 

𝜇𝑝 
(∇ 𝑃 𝑝 − 𝜌𝑝 𝐠 ) . (4)

ere 𝐮 𝑝 is the Darcy velocity of phase 𝑝 , 𝑘 is the absolute permeability,

 𝑟,𝑝 is the relative permeability of phase 𝑝 , 𝜇𝑝 is the viscosity of phase 𝑝 ,

nd 𝐠 is the gravitational acceleration. The fluid pressure of phase 𝑝 

 𝑝 = 𝑃 + 𝑃 𝑐 (5)

s the sum of the reference phase (usually the gas phase) pressure 𝑃 and

he capillary pressure 𝑃 𝑐 . To simplify the problem setting, our simula-

ion does not explicitly include molecular diffusion and hydrodynamic

ispersion. 

.2. Training data set generation 

We used the numerical simulator ECLIPSE (e300) to generate a

arge data set that is representative of most potential scenarios for

O 2 storage in deep geological formations. ECLIPSE is a state-of-the-art

ull physics numerical simulator that uses the finite difference system

ith upstream weighting and the adaptive IMplicit method for simula-

ion ( Schlumberger, 2014 ). Specifically, we used the CO2STORE option

n compositional mode with a CO 2 rich component and a water rich

omponent. The CO2STORE option applied the CO 2 -water equation-of-

tate given by Spycher et al. (2003) , Spycher and Pruess (2005) for tem-

erature within 12–250 ◦C and pressure up to 600 bar. The modeled

olume is a radially symmetrical cylindrical volume that is 200m thick

nd 100,000m along the radius. The reservoir has no-flow boundaries

n the top and bottom; the large radius mimics an infinite acting bound-

ry on the radial direction. This geometry represents CO 2 injection into

 regional-scale saline formation with a negligible dip, such as found in

he Illinois Basin and parts of the North Sea and Gulf Coast. The modeled

olume is isothermal and contains pure water prior to CO 2 injection. The

ertical injection well is located at the center of the modeled volume,

nd the well radius is 0.1m. The injection well has no cross-flow, which

eans CO 2 can flow only from the well to the reservoir. The well has

 single and continuous perforation and injects pure CO 2 at a constant

ate. 

We used 96 uniform grid cells in the vertical direction and 200 gradu-

lly coarsened grid cells in the radial direction to represent the reservoir.

his grid design is sufficiently refined to resolve the plumes in heteroge-

eous reservoirs ( Al-Khdheeawi et al., 2017a; 2018a ) while it remains

omputationally tractable for the purpose of training the deep learning

odels ( Wen and Benson, 2019 ). The numerical simulation runs for 30

ears with 24 gradually coarsening time snapshots. Details of the tem-

oral and spatial grid are discussed in Appendix A . 

For each simulation case, we sample the inputs from the following

our main categories. 

.2.1. Reservoir conditions 

This category consists of formation thickness, initial pressure, and

emperature, which are the most basic types of information available

or any geological formation. 

Existing machine learning-based methods for predicting subsurface

ow problems usually suffer from fixed data dimensions, which sig-

ificantly limits the models’ applicability. To account for the variable

ormation thicknesses, we assign extremely low permeability (10 −7 mD)

nd a zero capillary curve to layers in excess of the actual reservoir thick-

ess. Due to the extremely low permeability, CO 2 never enters these lay-

rs and the pressure also remains unchanged throughout the simulation.

sing this method, CCSNet can handle formation thicknesses from 15m

o 200m, which covers most of the known CO storage projects operating
2 
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Fig. 1. A. CCSNet’s inputs, prediction sequence, and outputs. The input section illustrates the four variable categories and specific variables in each categories. The 

prediction sequence section shows the 6 convolutional neural network (CNN) models. The output section shows the variables that CCSNet can produce. The arrows 

indicate the specific input and output for each model in the prediction sequence. B. Comparisons of the numerical simulation outputs, outputs predicted by CCSNet, 

and absolute/relative error at three arbitrary time snapshots for each model. The figures lie on the ( 𝑟, 𝑧 ) coordinate. The 𝑟 direction can extend to 100,000 m and the 

examples shown here are cropped. 
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oday ( Global CCS Institute, 2020 ). In future revisions, thicker reservoirs

an also be included. The initial pressure and temperature in a forma-

ion depend on the depth and geothermal gradient. Formations that are

oo shallow are unsuitable for injection because CO 2 might not be in a

uper-critical state under reservoir condition; for formations that are too

eep, drilling costs are prohibitively high for CO 2 storage ( NAS, 2018 ).

herefore, to generate realistic combinations of initial pressure and tem-

erature, we first randomly sample the initial pressure at the top of the

eservoir from 100 to 300 bar, which corresponds approximately to for-

ation depth from 1000 to 3000m. Throughout the reservoir, the initial

ressure field is assigned according to the hydrostatic pressure gradient.

ubsequently, for the reservoir temperature, we sampled the geothermal
3 
radient from 18 to 50 C 

◦/km and modeled isothermal reservoirs with

 wide range of temperatures from 35 to 170 ◦C. 

.2.2. Geological model 

The geological model describes the spatial distribution of permeabil-

ty values. We train CCSNet with a data set containing various types

f syntactic permeability maps generated using Stanford Geostatisti-

al Modeling Software (SGeMS) ( Remy et al., 2009 ). The permeabil-

ty maps mimic different depositional environments include a broad

ange of permeability values (10 −3 mD to 10 2 D), a wide variety of

orizontal and vertical correlations, and various permeability distribu-

ions, such as Gaussian, non-Gaussian, bi-modal, multi-modal distribu-
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ion, and uniform distributions (statistical characteristics summarized

n Appendix B ). Note that the permeability maps are isotropic and the

orosity fields are homogeneous with porosity of 15%. 

.2.3. Rock properties 

Commonly used rock property characteristic curves for CO 2 storage

nclude relative permeability curves ( Krevor et al., 2012; Benson et al.,

013 ) and capillary pressure curves ( Pini et al., 2012 ). Both characteris-

ic curves substantially impact the rate and direction of plume migration

nd are incorporated into CCSNet. The reservoir formation consists of

iliciclastic rock that are strongly to moderately water wet. To account

or different relative permeability and capillary pressure curves, we sam-

le the irreducible water saturation and van Genuchten function scaling

actor according to references of rock types that can be used for CO 2 
torage ( Krevor et al., 2012; Benson et al., 2013 ). The irreducible water

aturation controls the relative permeability and capillary pressure char-

cteristic curves. We used Corey’s curves to model relative permeability

urves as a function of water phase saturation ( 𝑆 𝑤 ): 

 𝑟,𝑤 = 𝑆 

∗ 
𝑤 
𝑛 𝑤 , 

 𝑟,𝐶𝑂 2 
= 𝑘 𝑟,𝐶𝑂 2 

( 𝑆 𝑤𝑖 )(1 − 𝑆 

∗ 
𝑤 
) 2 [1 − ( 𝑆 

∗ 
𝑤 
) 𝑛 𝐶𝑂 2 ] , (6) 

here 𝑘 𝑟,𝑤 is the relative permeability of the water phase, 𝑘 𝑟,𝐶𝑂 2 
is the

elative permeability of the CO 2 phase, 𝑆 𝑤𝑖 is irreducible water satu-

ation, coefficient 𝑛 𝑤 = 6 , coefficient 𝑛 𝐶𝑂 2 
= 5 , coefficient 𝑘 𝑟,𝐶𝑂 2 

( 𝑆 𝑤𝑖 ) =
 . 95 , and 𝑆 

∗ 
𝑙 
= ( 𝑆 𝑙 − 𝑆 𝑤𝑖 )∕(1 − 𝑆 𝑤𝑖 ) . To create different sets of relative

ermeability curves, we sampled 𝑆 𝑤𝑖 from 0.1 to 0.3 in the training set.

The capillary pressure curves are modeled by the van Geneuchten

unction: 

 𝑐 = 𝑃 𝑒 [( 𝑆 

∗ ) −1∕ 𝜆 − 1] 1− 𝜆, (7)

here 𝑃 𝑐 represents capillary pressure, 𝑃 𝑒 represents capillary entry

ressure, and 𝑆 

∗ = ( 𝑆 𝑤 − 𝑆 𝑤𝑖 )∕( 𝑆 𝑙𝑠 − 𝑆 𝑙𝑟 ) . Note that here we used an ap-

roximation of 𝑆 𝑙𝑟 = 0 . 999 to represent the capillary entry pressure to

void numerical errors in ECLIPSE. In the data set, we randomly sampled

he scaling factor 𝜆 from 0.3 to 0.7 to create capillary pressure curves

ith different slopes. The capillary entry pressure is scaled according to

he permeability in each grid cell by Leverett J-function: 

 𝑒 = 

√
𝑘 𝑟𝑒𝑓 ∕ 𝜙𝑟𝑒𝑓 √

𝑘 ∕ 𝜙
𝑃 𝑟𝑒𝑓 , (8)

here 𝑘 𝑟𝑒𝑓 = 3 . 95 × 10 −15 𝑚 

2 , 𝜙𝑟𝑒𝑓 = 0 . 185 , and 𝑃 𝑟𝑒𝑓 = 7500 𝑃 𝑎 . For the

an Genuchten curve, the 𝑆 𝑤𝑖 is the same as in Corey’s curve. 

.2.4. Injection design 

We created various combinations of injection rates, injection depths,

nd perforation thicknesses. In the training set, the maximum injection

ate is 2 MT/year and the minimum injection rate is 0.02 MT/year. This

njection rate range is sufficient to accommodate most existing and pro-

ected projects ( Furre et al., 2017; Finley, 2014; NAS, 2018 ). In addition

o the injection rates, injection locations and perforation thicknesses also

ignificantly influence the plume migration, especially in heterogeneous

eservoirs. We created a wide range of injection strategies with the injec-

ion perforation interval thicknesses range from 15m to 200m; the top

f the perforated interval is placed randomly within the depth interval

f the injection well. 

.3. Model architectures 

We designed a temporal-3d CNN model architecture for predicting

he dynamic changes of CO 2 gas saturation, pressure buildup, molar

ractions, and densities in each phases. The temporal-3d CNN consists

f 3d convolutional kernels ( Tran et al., 2015 ) that can extract infor-

ation in both the temporal and spatial dimensions, which are adopted

rom state-of-the-art video classification and human action recognition

odels ( Song et al., 2017; Xie et al., 2018 ). Notably, we trained the
4 
emporal-3d CNN on data that has both non-uniform spatial and tem-

oral dimension. Our results show that the temporal-3d CNN has excel-

ent performance in non-uniform spatial-temporal systems, which sig-

ificantly improved the models’ applicability. For the input/output re-

ression mapping, we used an encoder-decoder structure that contains

hree major components: encoder, processor, and decoder ( Fig. 2 ). 

The encoder maps the input 3d-volume to the input feature em-

edding. The processor learns the relationship between the input’s

mbedding and the output’s embedding using multiple 3d-ResConv

locks that we designed based on the well-known 2d-residual learn-

ng block ( He et al., 2016 ). The decoder projects the embedding of

he output to the temporal-3d output space that represents the dy-

amic change of saturation, pressure, and dissolved phase molar frac-

ion. Our work shows that the temporal-3d encoder-decoder architec-

ure has performance superior to that of the U-Net based architec-

ures ( Ronneberger et al., 2015 ) because, we hypothesize, the input and

utput exist in different spatial and temporal spaces. 

The schematic in Fig. 2 shows the network depth, and sizes of the Sat-

ration CNN. For pressure, molar fractions, and densities in each phases,

he depths and the sizes of the temporal-3d model architecture were

ptimized to provide accurate predictions each specific output. Param-

ters for each model are summarized in Appendix D, Appendix E , and

ppendix F . 

.4. Data configuration and augmentation 

.4.1. Outputs 

Numerical simulation outputs at any arbitrary time step can be repre-

ented as 2d matrices in the dimension of 96 × 200 ( 𝑟, 𝑧 ) . The 2d matrices

re stacked along the temporal dimension to construct the temporal-3d

olume with the dimension of 96 × 200 × 24 ( 𝑟, 𝑧, 𝑡 ) . The output data of

as saturation distribution, pressure buildup, molar fraction of CO 2 in

he liquid phase (xCO 2 ) and gas phase (yCO 2 ), and densities in each

hase are all configured in this manner. 

To improve the training efficiency, we applied min-max normaliza-

ion to the output values of pressure buildup and xCO 2 . We also applied

 data augmentation technique in addition the min-max normalization

or the outputs of yCO 2 and densities in each phase. For these outputs,

he magnitude of the output values within the plume have a large dif-

erence comparing to the values outside the plume. For example, gas

ensities within a plume has magnitude of few hundreds ( 𝑘𝑔∕ 𝑚 

3 ) with

 small variation; gas density outside of a plume is always zero. There-

ore, simply applying a min-max normalization to these outputs would

uppress the details within the plume area. We used the data augmenta-

ion technique that casts the values outside the plume to be a constant

lightly smaller than the minimum value within the plume. This tech-

ique allows us to maintained the details within the plume and produces

ighly accurate prediction for yCO 2 and densities in each phase. 

.4.2. Inputs 

The inputs to the CNN models are designed to have the identical

hape as the outputs. The high dimensional volume ( 96 × 200 × 24 ) pro-

ides room for incorporating all of the aforementioned input variables:

eservoir conditions, geological attributes, rock properties and injection

esign. For each input, the permeability map and reservoir thickness

re represented in a 96 × 200 matrix. The injection perforation location is

epresented by a binary matrix where only grid cells next to the perfora-

ion interval are marked by one. The variable of initial pressure, temper-

ture, injection rate, irreducible water saturation, and van Genuchten

caling factor are scalar values which we broadcast into matrices in the

imension of 96 × 200 . These matrices are concatenated to construct the

nput volume in dimension of 96 × 200 × 24 . Notice that these input vari-

bles only populate 7 of the 24 slices available in the input volume. The

dle slices are populated with permeability maps here and can be con-

erted easily to directional permeability or porosity in the future. 
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Fig. 2. Model schematics of the Saturation CNN. The Encode operation consists of Conv3D / BN / ReLu ; the ResConv operation consists of 

Conv3D / BN / Conv3D / BN / ReLu / Add ; the Decode operation consists of UnSampling / Padding/Conv3D/BN/Relu . The last dimension in the 

bracket denotes the number of channels. 

 

t  

r  

t  

u  

a  

f  

s  

p

 

p

2

𝐿

w  

p  

m  

r  

t  

t  

m  

T  

t  

t  

o  

o  

r  

m  

t  

o  

t

3

3

 

t  

a  

c  

t  

t  

c  

i

The Saturation and Pressure CNNs both use this input volume as

heir training input. For the xCO 2 and yCO 2 CNNs, the prediction also

equires the predicted gas saturation and pressure buildup in addition

o the input volume. Therefore, we concatenated the gas saturation vol-

mes, pressure buildup volumes, and the original input volumes to cre-

te a 4d training input with the dimension of 96 × 200 × 24 × 3 . Similarly,

or training the CNNs that predict the densities in each phase, we con-

tructed a similar 4d input that consists of the formation temperature,

ressure, and the molar fraction in the specific phase. 

The training/validation data split is 10/1 with 16,000 training sam-

les and 1600 validation samples. 

.5. Training strategy 

The loss function that we used is the Mean Square Error (MSE) loss: 

 𝑀𝑆𝐸 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

||𝐲 𝑖 − ̂𝐲 𝑖 ||2 2 , 

here 𝑁 is the number of training samples in a batch, 𝐲 is the true out-

ut in the data set, �̂� is the output predicted by the temporal-3d CNN

odel, described as �̂� 𝑖 = 𝐟 ( 𝐱 𝑖 , 𝜃) , where 𝜃 is the model’s learnable pa-

ameters and 𝐱 𝑖 is the input. During training, 𝜃 is updated based on

he gradient to the loss function with respect to the 𝜃 (also referred

o as back propagation in machine learning). We used the Adam opti-
5 
izer ( Kingma and Ba, 2014 ) for the minimization of the loss function.

he Glorot normal initializer ( Glorot and Bengio, 2010 ) (also referred

o as the Xavier normal initializer) was used to initialize the convolu-

ional layers’ kernels in the CNNs. We applied L2 weight regularizers

n the convolutional layers with a hyperparameter of 0.001 to reduce

verfitting. The learning rate was initialized to be 10 −4 and manually

educed to 10 −7 throughout the training process. Our previous experi-

ents show that the training efficiency of the CNNs is nearly insensitive

o the choice of batch size ( Wen et al., 2021 ). The models were trained

n NVIDIA v100 GPUs, and the training duration varied from a few days

o a week. 

. Results 

.1. CO 2 gas saturation distribution 

Using the temporal-3d CNN model illustrated in Fig. 2 , we trained

he Saturation CNN to predict dynamic CO 2 gas saturation distributions

s a function of space and time. Given information about the reservoir

onditions, geological attributes, rock properties and injection patterns,

he Saturation CNN generates predictions of dynamic CO 2 gas satura-

ion distributions in ∼0.05s, which is more than 10 4 times faster than

onventional numerical simulators (details on computing specifications

n discussed in Section 4.1 ). 
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Table 1 

Accuracy summary for model/output. All values were evaluated 

base on 1000 randomly chosen samples. 𝑅 

2 refers to the average 

scores in the training or validation set, 𝜇 refers to a mean, 𝜎 refers 

to a standard deviation, 𝑃 𝐴𝐸 refers to absolute errors within the 

plume; 𝑅𝐴𝐸 refers to relative absolute errors for the whole field; 

𝑃 𝑅𝐸 refers to relative errors within the plume. 

Model / Output Metric Training Validation Unit 

Saturation CNN 𝑅 2 0.999 0.998 - 

𝜇𝑃𝐴𝐸 0.008 0.009 𝑚 3 ∕ 𝑚 3 

𝜎𝑃𝐴𝐸 0.013 0.014 𝑚 3 ∕ 𝑚 3 

Pressure CNN 𝑅 2 0.997 0.996 - 

𝜇𝑅𝐴𝐸 2.3 2.5 % 

𝜎𝑅𝐴𝐸 1.1 1.2 % 

xCO 2 CNN 𝑅 2 0.998 0.998 - 

𝜇𝑃𝐴𝐸 1.58 ×10 −4 1.69 ×10 −4 𝑚𝑜𝑙 ∕ 𝑚𝑜𝑙 
𝜎𝑃𝐴𝐸 6.60 ×10 −5 8.31 ×10 −5 𝑚𝑜𝑙 ∕ 𝑚𝑜𝑙 

yCO 2 CNN 𝑅 2 1.000 1.000 - 

𝜇𝑃𝐴𝐸 6.80 ×10 −4 8.09 ×10 −4 𝑚𝑜𝑙 ∕ 𝑚𝑜𝑙 
𝜎𝑃𝐴𝐸 3.42 ×10 −4 4.41 ×10 −4 𝑚𝑜𝑙 ∕ 𝑚𝑜𝑙 

Liquid phase 𝑅 2 1.000 1.000 - 

density CNN 𝜇𝑃𝑅𝐸 0.05 0.06 % 

𝜎𝑃𝑅𝐸 0.06 0.06 % 

Gas phase 𝑅 2 1.000 1.000 - 

density CNN 𝜇𝑃𝑅𝐸 0.01 -0.01 % 

𝜎𝑃𝑅𝐸 0.14 0.16 % 

Mass balance 𝑅 2 
𝑙𝑖𝑞 

0.999 0.999 - 

𝜇𝑙𝑖𝑞 0.06 0.07 % 

𝜎𝑙𝑖𝑞 0.68 1.07 % 

𝑅 2 
𝑔𝑎𝑠 

1.000 1.000 - 

𝜇𝑔𝑎𝑠 0.07 0.07 % 

𝜎𝑔𝑎𝑠 0.76 0.93 % 

𝑅 2 
𝑡𝑜𝑡𝑎𝑙 

1.000 1.000 - 

𝜇𝑡𝑜𝑡𝑎𝑙 -0.09 0.08 % 

𝜎𝑡𝑜𝑡𝑎𝑙 0.74 0.85 % 
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Figure 1 B shows an example of the Saturation CNN’s prediction at

everal time snapshots in comparison with the numerically simulated

utput. This example demonstrates the multi-physics nature of the prob-

em: the effects of viscous forces due to injection; the effects of gravity

hat lead to buoyancy induced flows; and spatially varying rock prop-

rties that locally counteract buoyancy. A dry-out zone also forms near

he injection perforation, where the liquid-phase water vaporizes en-

irely into the gas phase. Although the dry-out is challenging for most

umerical simulators due to the sharp gas saturation gradient, the Sat-

ration CNN accurately predicts this in addition to the saturation vari-

tions caused by geological heterogeneity. 

Based on a 1000 randomly chosen examples, we show that the Sat-

ration CNN is highly accurate ( Table 1 , Fig. 3 A). Similarly high 𝑅 

2 

alues in the training and validation set demonstrate that the model has

uccessfully learned the underlying relationship between the input pa-

ameters and the corresponding saturation plume behavior instead of

erely memorizing the training data. We use six examples in Fig. 3 B to

emonstrate the prediction performance at different 𝑅 

2 scores (ranked

rom high to low), in which we show that the Saturation CNN per-

orms equally well throughout the prediction period and over the entire

ange of saturation values. Cases with smoother permeability maps are

atched almost perfectly. Even for the most challenging example that

s in the lowest 5% of the validation set, the predicted saturation dis-

ribution is in close agreement to the simulated output. The accuracy

tatistics provided in Table 1 indicate that the Saturation CNN provides

redictions that are sufficiently accurate for predicting plume migra-

ion, sweep efficiency assessment, plume footprint prediction, and risk

nalysis. 

.2. Pressure buildup 

We trained another temporal-3d CNN model, Pressure CNN (model

arameters summarized in Appendix E ), to predict the pressure buildup
6 
ue to CO 2 injection. The Pressure CNN can be used independently from

he Saturation CNN. Pressure buildup predictions take ∼0.04s. Fig. 1 B

hows an example of the Pressure CNN’s output at various times, in

hich the CO 2 is injected in the lower half of the reservoir, creating a

one of high pressure buildup near the injection perforation. 

Pressure buildups vary widely in the reservoir and between cases,

anging from almost 400 bars near the injection well in over pressured

eservoirs, to 0 bars near the reservoir boundary in highly permeable

eservoirs. The Pressure CNN successfully accounts for the distinctly dif-

erent pressure behaviors in different reservoirs and produces highly ac-

urate predictions ( Table 1, Fig. 4 A). The six examples in Fig. 4 C and D

llustrate the excellent performance in predicting dynamic propagation

f the pressure buildup in the reservoir throughout the injection period.

nlike saturation predictions where permeability heterogeneity domi-

ants the performance, the Pressure CNN’s performance is correlated

o the magnitude of pressure buildups, and poorest performance is for

ases with the smallest pressure buildups ( Fig. 4 B). 

.3. Mass balance analysis 

Ability to accurately track the total mass balance and distribution of

ass between phases is a critical measure of model performance and

llows us to evaluate how well the deep learning outputs satisfy the

overning conservation laws without explicitly representing the PDEs

n the loss function. CCSNet uses six deep learning models to predict

ll the components needed to perform a mass balance ( Fig. 1 A). The

ollowing equation describes the CO 2 mass balance in the reservoir at a

iven time step: 

 = 

∑
𝑖,𝑛 

𝑉 𝑛 ( 𝜙𝑆𝜌𝑋) 𝑖,𝑛 (9)

here 𝑀 is the total CO 2 mass, 𝑖 denotes the phase (gas or liquid), 𝑛

enotes the spatial grid, 𝑉 is cell volume, 𝜙 is porosity, 𝑆 is saturation,

is density, and 𝑋 is the mass fraction of CO 2 . 

CCSNet generates each variable required in the mass balance analy-

is for the injected CO 2 . The Saturation CNN provides 𝑆 𝑖,𝑛 . Since the rock

s compressible, the Pressure CNN is used together with the compress-

bility of the rock to predict 𝜙𝑖,𝑛 . Additionally, we developed and trained

 model for predicting molar fractions of CO 2 in the liquid (xCO 2 CNN),

 model for predicting molar fractions of CO 2 in the gas phase (yCO 2 
NN), as well as two models for predicting densities of the liquid and

as phases. Examples of each model’s output are shown in Fig. 1 B. Refer

o Appendix C for details on the mass balance calculations. 

.3.1. xCO 2 CNN 

Prediction of the molar fraction of dissolved CO 2 in the liquid phase

xCO 2 ) requires information about the gas saturation distribution, tem-

erature, and pressure. CO 2 dissolves into the reservoir fluid wherever

eparate phase CO 2 is present. For the two-component system studied

ere, pressure and temperature control the solubility of CO 2 . A small

mount of dissolved CO 2 migrates in advance of the plume. No dissolved

O 2 appears in the dry-out zone near the injection well because the en-

ire liquid phase is vaporized into the gas phase and transported away

rom the dry-out zone. Taking these factors into account, we use pre-

icted outputs from the Pressure CNN and Saturation CNN in addition

o the original input to train the xCO 2 CNN. Our experiments show that

sing this concatenated input significantly reduced over-fitting compar-

ng to training with the original input. 

The trained xCO 2 CNN performs very well ( Table 1 ). Three examples

n Fig. 5 B and C demonstrate the performance of the xCO 2 CNN. The

rediction of xCO 2 CNN is more accurate in relatively homogeneous

eservoirs where the dissolved phase xCO 2 stays close to the saturation

lume front ( Fig. 5 C.a). Heterogeneous cases such as Fig. 5 C.c are more

hallenging because dissolved CO 2 migrates in advance of the plume at

arious velocities. 
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Fig. 3. A. Histograms of Saturation CNN’s R 2 scores in the training and the validation set with the mean and standard deviation. On the validation set histogram, 

the red bars denote the R 2 score of the 6 examples in B and C. The alphabetical order corresponds to cases with R 2 scores at the 99, 95, 70, 30, 5, and 1 percentile. 

B. Gas saturation predicted by CCSNet vs. numerical simulation on each grid for the 6 examples. The colors of the points represent the injection duration. C. The 

permeability map, numerical simulation output, CCSNet predicted output, and absolute error for the 6 examples at 30 years. Inputs variables are summarized under 

each permeability map. The horizontal axes indicate the radial direction and the plume can extend out of the plot area. The mean absolute error within the plume 

( 𝜇𝑃𝐴𝐸 ) is shown for each example. The reservoir thicknesses are marked on the vertical axes. (For interpretation of the references to color in C.’s legend, the reader 

is referred to the web version of this article.) 
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.3.2. yCO 2 CNN 

The molar fraction of CO 2 in the gas phase depends on temperature

nd pressure. A small fraction of water vaporizes into the gas phase ex-

ept in the dry-out zone, where the gas-phase contains nearly purely

O 2 . We trained the yCO 2 CNN to predict the molar fraction of CO 2 in

he gas phase given the temperature, gas saturation predicted by Satu-

ation CNN, and pressure predicted by Pressure CNN (model parameters

ummarized in Appendix F ). The yCO 2 CNN provides excellent predic-

ions for both the training and validation set ( Table 1 ). 
7 
.3.3. Fluid density CNNs 

The fluid phase densities in the gas or liquid phase depends on the

emperature, pressure, and molar fraction of CO 2 in that phase. There-

ore, we trained two auxiliary CNNs to generate density predictions

iven temperature, pressure predicted by the Pressure CNN, and mo-

ar fraction predicted by the xCO 2 or yCO 2 CNN (model architecture in

ppendix F ). The trained fluid phase density CNNs are highly accurate

 Table 1 ). 
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Fig. 4. A. Histogram of Pressure CNN’s R 2 scores in the validation set with the mean and standard deviation. The red bars mark the score of the 6 examples in B, 

C and D. The alphabetical order corresponds to cases with R 2 scores at the 99, 95, 70, 30, 5, and 1 percentile. B. Scatter plot of the 𝑅 

2 scores vs. average pressure 

buildup. C. Pressure buildup predicted by CCSNet vs. numeral simulation on each grid for the 6 examples. The colors of the points represent the injection duration. D. 

The permeability map, numerical simulation output, CCSNet output, and relative error for the 6 examples at 30 years. Inputs for injection rate, temperature, initial 

pressure, irreducible water saturation, and capillary pressure scaling factor are summarized under the permeability map. The mean absolute relative error ( 𝜇𝑅𝐴𝐸 ) 

is shown for each case. The horizontal axes indicate the radial direction and the reservoir thicknesses, are marked on the vertical axes. (For interpretation of the 

references to color in C.’s legend, the reader is referred to the web version of this article.) 
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.3.4. Error analysis 

CCSNet generates accurate mass balances over the entire injection

eriod ( Table 1 and Fig. 6 ). The largest errors occur during the first

everal days of injection. We hypothesize this is caused by a larger frac-

ion of the CO 2 being in the liquid phase early in the injection process.

he amount of CO 2 dissolved in the liquid phase is highly influenced by

he artifacts of numerical dispersion at the leading edge of the plume.

herefore, at the beginning of the CO 2 injection, the training data are

ess systematic and challenging to learn. As injection goes on, a larger
8 
raction of the CO 2 mass is in the gas phase, therefore the mass predic-

ions becomes more accurate. 

Compared to physics informed machine learning approaches, super-

ised learning methods are criticized for the ‘lack of physics’ because the

oss function does not explicitly describe the conservation laws and gov-

rning equations. However, our accurate mass balances together with

he accurate distribution of CO 2 in both phases indicate that the super-

ised learning-based prediction sequence can satisfy the conservation

aws and governing equations given sufficient data and training. 
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Fig. 5. A. Histograms of xCO 2 CNN’s R 2 scores in the training and the validation set with mean and standard deviation. The red bars mark the score of the 6 

examples in B and C. The alphabetical order corresponds to cases with R 2 scores at the 95, 50, and 5 percentile. B. Histogram comparisons between the numerical 

simulation’s output and CCSNet’s output within the plume for 3 examples. C. The permeability map, numerical simulation output, CCSNet output, and absolute error 

for 3 examples at 30 year. Inputs for injection rate, temperature, initial pressure, irreducible water saturation, and capillary pressure scaling factor are summarized 

under the permeability map. The mean absolute error within the plume ( 𝜇𝑃𝐴𝐸 ) is shown for each example. The horizontal axes indicate the radial direction, and the 

reservoir thicknesses are marked on the vertical axis. 

Fig. 6. Mass balance error for the total, liquid phase, and gas phase CO 2 mass. The x-axes indicate the days of injection and the y-axes indicate percentage of the 

error. The black dotted dash lines are references for ±1% . The light and dark shaded area are the 68% and 95% confidence intervals of the error. 

4

4

 

u  

C  

4  

a

 

g  

p  

v  

c  

t  

r  

f  

e  

∼  

q  

u  

a  

t  

p  

b  

r  

d  

a

4

 

d  

p  

d  

p  
. Discussion 

.1. Comparative computational efficiency 

The average numerical simulation run time for 1000 random cases

sing ECLIPSE (e300) is 10 min on an Intel® Xeon® Processor E5-2670

PU. The numerical simulation run time for each simulation varies from

 to over 100 min. Each simulation case utilizes a fully dedicated CPU,

nd the run time depends on the difficulty of the case. 

To compare the computational efficiency, we used a NVIDIA v100

raphical processing units (GPUs) for CCSNet model inference. CCSNet’s

rediction times have very small variances ( ∼1%) compared to the con-

entional numerical simulator, and we computed computational effi-

iency based on the average of 1000 random samples. The prediction

ime for the Saturation CNN and Pressure CNN are ∼0.05s and ∼0.04s,

espectively. Given the gas saturation and pressure buildup, the models

or predicting the molar fraction of CO 2 in the liquid and gas phases

ach take ∼0.03s. The gas and liquid phase fluid densities also require
9 
0.03s. Therefore, running the entire deep learning model sequence re-

uires ∼0.22s to provide the full set of outputs that a numerical sim-

lator can provide. The comparative speed-up between using CCSNet

nd ECLIPSE varies from 10 3 to 10 4 orders of magnitude depending on

he information required by the particular analysis. For example, when

redicting the sweep efficiency, we can run the Saturation CNN model

y itself, which requires only ∼0.05s. Calculating the solubility trapping

equires outputs from the Saturation, Pressure, xCO 2 , and liquid phase

ensity CNNs, which adds up to ∼0.15s. Average speed ups for relevant

nalyses are summarized in Table 2 . 

.2. Applications with fast prediction 

Taking the advantage of the fast prediction speed of CCSNet, we

evelop a method for estimating sweep efficiency and solubility trap-

ing using information that is often available for screening or comparing

ifferent CO 2 storage sites. In both cases, we stochastically sample the

roblem domains to develop a large ‘data set’ composed of 5000 CCSNet
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Table 2 

Comparative computational efficiency of CCSNet. We used a 

NVIDIA v100 GPU for the model inference and the prediction 

time was calculated by taking the average of 1000 random runs. 

The average ECLIPSE simulation run time in the training set (10 

mins) was used for the comparison, where each simulation was 

carried out using an dedicated Intel® Xeon® Processor E5-2670 

CPU. 

Variable Prediction time Average speed up 

Gas saturation distribution 0.05s 1.2 ×10 4 

Pressure buildup 0.04s 1.5 ×10 4 

Sweep efficiency 0.05s 1.2 ×10 4 

Solubility trapping 0.15s 4.0 ×10 4 

Mass balance 0.22s 2.7 ×10 3 
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𝐸

uns to establish a relationship between the reservoir/operational prop-

rties and the sweep efficiency or solubility trapping. We sampled the

omogeneous permeability from 1000mD to 5mD with a log-uniform

istribution and the following variables with an uniform distribution:

njection rate from 0.2 to 2 MT/yr, initial pressure from 80 to 160 bar,
10 
eothermal gradient from 22 to 28 ◦𝐶/km, 𝑆 𝑤𝑖 from 0.1 to 0.3, 𝜆 from

.3 to 0.7, reservoir thickness from 15 to 200m, and perforation length

rom 15 m to the reservoir thickness. The sampled data set contains only

hose cases where the maximum pressure buildup is limited to 75% of

he initial reservoir pressure. Here we use homogeneous reservoir char-

cteristics since this is usually the only information available during site

creening (e.g. in advance of detailed site-specific studies). By using CC-

Net, the computational time for exhaustively sampling the domain is

educed from ∼35 days to ∼4 mins for sweep efficiency and ∼12 mins

or solubility trapping. 

.2.1. Sweep efficiency estimation 

Sweep efficiency is a measure of how efficiently the storage space

n a reservoir is used; the higher the sweep efficiency the better be-

ause higher sweep efficiency results in a smaller footprint of the CO 2 
lume ( Van der Meer, 1995 ). The footprint is the areal extent of the

lume defined as 𝜋𝑟 2 max , where 𝑟 max refers to the largest distance away

rom the well that CO 2 has migrated. Sweep efficiency ( 𝐸 𝑠𝑤𝑒𝑒𝑝 ) is calcu-

ated as: 

 𝑠𝑤𝑒𝑒𝑝 = 

𝑉 𝑔𝑎𝑠 

𝑉 𝑟 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 

= 

∑
𝑛 𝑉 𝑛 𝜙𝑛 𝑆 𝑛 ∑

𝑛 ∈𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑉 𝑛 𝜙𝑛 
, (10) 
Fig. 7. A. Comparisons of sweep efficiency and 

solubility trapping coefficient calculated using 

the empirical Eq. (11) and (12) verses using CC- 

SNet in the validation set. B. Coefficient sen- 

sitivity of each term in Eq. (11) and (12) . P5 

and P95 represent the lowest 5th percentile and 

highest 95th percentile of the value for the term 

in the validation set. 
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here 𝑉 is the cell volume, 𝜙 is the porosity, 𝑆 is the gas saturation, 𝑛 de-

otes the spatial grid cell, and 𝑛 ∈ 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 denotes all grid cells within

he plume footprint. Using the gas saturation predicted by CCSNet, we

nd that E 𝑠𝑤𝑒𝑒𝑝 depends strongly on reservoir characteristics, ranges

rom as low as 0.01 to 0.2 over the sampled problem domain ( Fig. 7 A).

e use CCSNet-generated 𝐸 𝑠𝑤𝑒𝑒𝑝 values as inputs into a non-linear mul-

ivariate regression algorithm (details in Appendix G ) to develop an em-

irical relationship between 𝐸 𝑠𝑤𝑒𝑒𝑝 and reservoir/operational parame-

ers. 

 𝑠𝑤𝑒𝑒𝑝 = exp (0 . 05955 − 0 . 5258 ln 𝑁 𝑏 − 1 . 390 × 10 −3 𝑁 𝑏 

0 . 2503 ln ( 𝑟 𝑖𝑛𝑗 
𝑟 𝑟𝑒𝑓 

) − 1 . 162 𝑆 𝑤𝑖 + 𝜖) , 𝑁 𝑏 ∈ (10 , 450) (11) 

Here 𝑁 𝑏 is the Bond number defined as Δ𝜌𝑔𝑏 𝑟𝑒𝑠 ∕ 𝑃 𝑒 where 𝑏 𝑟𝑒𝑠 is the

eservoir thickness and 𝑃 𝑒 is the capillary entry pressure, 𝑆 𝑤𝑖 is the ir-

educible water saturation, 𝑟 is injection rate, and 𝜖 is the error term

reference values and details on each term summarized in Table G.7 ).

s shown in Fig. 7 A, Eq. (11) is a excellent predictor of sweep efficiency

ver the range of Bond numbers from 10 to 450, as long as the injection

ate is limited to comply with the 75% overpressure constraint. Previous

tudies have demonstrated that sweep efficiency and trapping are influ-

nced by gravity number and depositional environment ( Ide et al., 2007;

kwen et al., 2014 ). Here we show that for homogeneous reservoirs, the

ond number ( 𝑁 𝑏 ) has the largest influence on 𝐸 𝑠𝑤𝑒𝑒𝑝 ; reservoirs with

ower Bond numbers have higher 𝐸 𝑠𝑤𝑒𝑒𝑝 ( Fig. 7 B). 𝐸 𝑠𝑤𝑒𝑒𝑝 also increases

ith higher injection rates and lower S 𝑤𝑖 values. Surprisingly, for the

omogeneous reservoirs studied here, factors such as injection depth or

njection interval had no significant influence on 𝐸 𝑠𝑤𝑒𝑒𝑝 . This would be

xpected to change for heterogeneous reservoirs. 

.2.2. Solubility trapping estimation 

Solubility trapping occurs when CO 2 dissolves into the formation

ater and is beneficial for reducing the risk of CO 2 leakage ( Gunter

t al., 2004; Gilfillan et al., 2009; Suekane et al., 2008 ). Using a simi-

ar stochastic approach as described above, we developed an empirical

xpression for estimating solubility trapping ( 𝐶 𝑑𝑖𝑠𝑠 ), where 𝐶 𝑑𝑖𝑠𝑠 is the

ass fraction of the injected CO 2 dissolved in the formation water: 

 𝑑𝑖𝑠𝑠 = 0 . 0762 + 0 . 1804 𝑆 𝑤𝑖 − 0 . 0030 ln 𝑁 𝑏 + 0 . 2667 𝑘 𝑟𝑒𝑓 
𝑘 

−0 . 0149 𝜆 − 0 . 0964 𝑃 

𝑃 𝑟𝑒𝑓 
+ 0 . 0177 𝑇 

𝑇 𝑟𝑒𝑓 
+ 𝜖

(12) 

here 𝑘 is permeability, 𝜆 is the coefficient in van Genechuten capillary

unction, 𝑃 is the initial pressure, and 𝑇 is the temperature. Reference

alues and the error term are summarized in Table G.7 . Solubility trap-

ing is strongly influenced by a number of reservoir properties, with

alues ranging from 0.05 to nearly 0.15 ( Fig. 7 A). In addition to the

ond number and 𝑆 𝑤𝑖 , 𝐶 𝑑𝑖𝑠𝑠 is also influenced by the formation perme-

bility, initial pressure, temperature, and the coefficient in the capillary

ressure function. Solubility trapping increases with lower permeability,

igher reservoir temperature, lower pressure, and lower Bond number

 Fig. 7 B). This result is counterintuitive, because the solubility of CO 2 in

ater increases with higher pressure and lower temperature. This anal-

sis suggests 𝐶 𝑑𝑖𝑠𝑠 is more strongly controlled by the density of the CO 2 ,

hich like 𝐶 𝑑𝑖𝑠𝑠 , decreases with higher temperature and lower pressure.

he lower the density of CO 2 , the greater the plume volume, hence more

ontact area with the formation water and higher 𝐶 𝑑𝑖𝑠𝑠 . 

Note that the solubility trapping described here occurs during the

njection phase of the CO 2 storage project. After injection stops, CO 2 
ill continue to dissolve as the result of convective mixing ( Riaz et al.,

006 ) and spreading ( MacMinn et al., 2012 ), thus our estimates should

e viewed as a lower bound. Additionally, we considered reservoirs

ith pure water; reservoirs with higher concentrations of dissolved salts

ave lower solubility ( Enick and Klara, 1990 ) and consequently smaller

mounts of solubility trapping. 
11 
. Conclusion and future work 

We show that deep learning models such as CCSNet has the potential

o provide an alternative to computationally intensive numerical simu-

ators for routine tasks, such as predicting the injection performance of

O 2 storage projects. Important parameters such as the maximum ex-

ent of the CO 2 plume, saturation distributions, pressure buildup at the

njection well and throughout the reservoir, sweep efficiency, and sol-

bility trapping can be calculated accurately with high computational

fficiency. While CCSNet includes many of the important parameters

eeded to realistically simulate the injection phase of a CO 2 storage

rojects, it is currently limited to systems well-represented by 2d-radial

eometry and isotropic rock properties, and does not yet include post-

njection processes processes such as residual gas trapping ( Doughty,

007; Krevor et al., 2015b ) or mineral trapping ( Bachu et al., 1994; Xu

t al., 2004 ). Specifically, as the problem setting expands to high resolu-

ion 3d cases, the training data set size, the network parameters needed,

nd the training time will grow significantly. Nevertheless, the ability to

rain the model to perform the current tasks with such a high degree of

ccuracy, covering such a large domain of input parameters bodes well

or increasing the capabilities of these models to include other features.

CCSNet has the flexibility to include additional input parameters

nd features when needed. As discussed in data configuration, the in-

ut volumes contain idle slices that can be used for other parameters.

or example, the model currently uses isotropic permeability values.

e can easily add anisotropy and porosity to the model by converting

ome slices into directional permeability and porosity. Similarly, rela-

ive permeability curves could be modified to include residual gas trap-

ing ( Doughty, 2007 ). 

The benefits of the high computational efficiency of CCSNet are ev-

dent from the new methods for estimating 𝐸 𝑠𝑤𝑒𝑒𝑝 and 𝐶 𝑑𝑖𝑠𝑠 presented

ere. It is now possible to quickly provide reservoir-specific estimates

f these parameters for screening prospective storage sites using data

ets that are publicly available ( DOE, 2015; Team, 2013 ), of Ocean En-

rgy Management . CCSNet can also be used once more site-specific data

n geological heterogeneity is available to optimize injection depths

nd rates, make proabalistic predictions of plume footprint and pressure

uildup, and for inverse modeling of monitoring data; all tasks required

o support regulatory permit applications and compliance. 

eb application 

We developed a publicly accessible web application that hosts CC-

Net. Users’ can customize input variable combinations, including up-

oading their own permeability maps. The web application provides

oth independent and collaborative prediction to the models described

bove and produces outputs such as gas saturation, pressure buildup,

olubility trapping, and sweep efficiency. The web application is avail-

ble at CCSNet.ai . Refer to https://youtu.be/5bIlfjyo6Jk for a video

emonstration of this web application. 

ode and data availability 

The python code for CCSNet modeling suite and the data set used in

raining is available at https://github.com/gegewen/ccsnet _ v1.0 . 
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ppendix A. Grid resolution 

The vertical grid dimension is 𝑑 𝑧 = 200 𝑚 ∕96 = 2 . 0833 𝑚 . The radial

rid dimension is 𝑑 𝑟 = 3 . 6 𝑚 × 𝑎 𝑖 −1 , where 𝑎 = 1 . 035012 , 𝑖 ∈ [1 , … , 200] .
e used 24 time snapshots with gradually coarsening resolution to rep-

esent the total 30-year period where the time interval varies from days

o years. Time step intervals 𝑑 𝑡 = 1 . 421245 𝑖 −1 days, where 𝑖 ∈ [1 , … , 24] .
t early time steps, the CO 2 plume is located near the injection well

here the spatial grid has high resolution. Capturing the variability be-

ween each time step requires high temporal resolution. Towards the

nd of the injection, because the plume migrates away from the injec-

ion well where the spatial grids are coarser, the coarse time resolutions

re adequate. The temporal grid design also satisfies needs for operation

hat often requires finer time resolution monitoring at the beginning of

njection. 

ppendix B. Statistical characteristics of permeability maps 

Table B.3 

Table B.3 

The permeability maps are generated using Stanford Geostat

an open-source computer package for geostatistical modeling

medium appearance, spatial correlation, mean, and contrast ra

maps. The permeability value for an individual cell can range

Medium Parameter

Gaussian Field aver

Vertical c

Horizonta

Contrast r

von Karman ( Carpentier and Roy-Chowdhury, 2009 ) Field aver

Vertical c

Horizonta

Contrast r

Discontinuous Field aver

Vertical c

Horizonta

Contrast r

Layered Field aver

Number o

Contrast r

Homogeneous Field perm
12 
 Modeling Software (SGeMS) ( Remy et al., 2009 ). SGeMS is 

rding to user defined spatial variables. Here we defined the 

 ℎ𝑖𝑔ℎ ∕ 𝑘 𝑙𝑜𝑤 ) in each map to create a large variety of permeability 

 10 −3 mD to 10 2 D. 

Mean Std Max Min Unit 

30.8 58.3 1053 0.3 mD 

ion 7.3 3.6 12.5 2.1 m 

lation 2190 1432 6250 208 m 

4.01 × 10 4 2.19 × 10 5 3.00 × 10 6 1.01 - 

39.9 54.4 867.9 1.8 mD 

ion 7.2 3.5 12.5 2.1 m 

lation 2.15 × 10 4 1.40 × 10 4 6.23 × 10 4 208 m 

2.66 × 10 4 1.54 × 10 5 2.12 × 10 6 1.00 - 

80.8 260.2 5281 2.0 mD 

ion 7.2 3.6 12.5 2.1 m 

lation 2176 1429 6250 208 m 

2.17 × 10 4 1.51 × 10 5 2.68 × 10 6 1.01 - 

258.6 140.8 1022 5.4 mD 

rials 10 5 20 2 - 

190.7 582.0 1.38 × 10 4 1.00 - 

ty 327.7 478.1 1216 4.0 mD 

ppendix C. Mass balance analysis 

The discretized form of the mass accumulation term ( Eq. (2) ) at a

iven time step is written as: 

 = 

∑
𝑖,𝑛 

𝑉 𝑛 ( 𝜙𝑆𝜌𝑋) 𝑖,𝑛 , (C.1)

here and 𝑛 denotes the spatial grid and 𝑖 denotes phase 𝑔𝑎𝑠 or 𝑙𝑖𝑞𝑢𝑖𝑑.

CSNet uses six models to collaboratively provide predictions to all the

omponents. The Saturation CNN predicts the gas saturation which pro-

ides 𝑆 𝑖,𝑛 ; the fluid density CNNs provide 𝜌𝑖,𝑛 ; the xCO 2 CNN and the

CO 2 CNN provide the molar fraction of CO 2 in each phase, which are

hus used for calculating 𝑋 𝑖,𝑛 . Since the reservoir rock is compressible,

ore volume 𝜙𝑛 is a function of the pressure in each cell: 

 𝑡 = 

𝑑𝜙𝑛 

𝑑𝑃 𝑛 

1 
𝜙𝑛 

, (C.2)

here 𝐶 𝑡 = 5 × 10 −4 bar −1 represents the rock compressibility. The Pres-

ure CNN predicts the pressure in each grid cell and the pore volume

𝑛 is adjusted as 𝜙𝑛 ( 𝑃 𝑛 ) = 𝜙𝑛 ( 𝑃 𝑛,𝑟𝑒𝑓 )(1 + 𝑋 + 𝑋 

2 ∕2) , where 𝑋 = 𝐶 𝑡 ( 𝑃 𝑛 −
 𝑛,𝑟𝑒𝑓 ) and 𝑃 𝑛,𝑟𝑒𝑓 = 1 . 0132 bar. 

Note that a neural network rarely predicts true zeros because the

utputs are calculated empirically. Instead, zeros are represented by tiny

umbers such as 10 −6 . In the mass balance calculation, these tiny values

n the predictions are amplified at grid cells that are far away from the

njection well due to the large grid cell volume. Therefore, we applied

utoffs to the prediction of the Saturation and xCO 2 CNNs by casting gas

aturation smaller than 1e-2 and xCO 2 smaller than 8e-4 to be zeros. 
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Appendix D. Saturation CNN architecture 

Table D.4 

Table D.4 

Saturation CNN architecture. Conv3D denotes a 3D convolutional layer; c denotes the number of channels in the layer output; k 
denotes the kernel (also refered as filter) size; s denotes the size of the stride; BN denotes a batch normalization layer; ReLu denotes 

a rectified linear layer, Add denotes a addition with the identity; UnSampling denotes a unSampling layer that expands the matrix 

dimension using nearest neighbor method, and Padding denotes a padding layer using the reflection padding technique. In this model, 

the number of total parameters is 40,399,489 with 40,386,817 trainable parameters and 12,672 non-trainable parameters. 

Part Layer Output Shape 

Input (96,200,24,1) 

Encode 1 Conv3D(c32k3s2)/BN/ReLu (48,100,12,32) 

Encode 2 Conv3D(c64k3s1)/BN/ReLu (48,100,12,64) 

Encode 3 Conv3D(c128k3s2)/BN/ReLu (24,50,6,128) 

Encode 4 Conv3D(c128k3s1)/BN/ReLu (24,50,6,128) 

Encode 5 Conv3D(c256k3s2)/BN/ReLu (12,25,3,256) 

Encode 6 Conv3D(c256k3s1)/BN/ReLu (12,25,3,256) 

ResConv 1 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 2 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 3 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 4 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 5 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 6 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 7 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 8 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

Decode 6 UnSampling/Padding/Conv3D(c256k3s1)/BN/Relu (12,25,3,256) 

Decode 5 UnSampling/Padding/Conv3D(c256k3s2)/BN/Relu (24,50,6,256) 

Decode 4 UnSampling/Padding/Conv3D(c128k3s1)/BN/Relu (24,50,6,128) 

Decode 3 UnSampling/Padding/Conv3D(c128k3s2)/BN/Relu (48,100,12,128) 

Decode 2 UnSampling/Padding/Conv3D(c64k3s1)/BN/Relu (48,100,12,64) 

Decode 1 UnSampling/Padding/Conv3D(c32k3s2)/BN/Relu (96,200,24,32) 

Output Conv3D(c1k3s1) (96,200,24,1) 

Appendix E. Pressure CNN architecture 

Table E.5 

Table E.5 

Pressure CNN architecture. Conv3D denotes a 3D convolutional layer; c denotes the number of channels in the layer output; k denotes 

the kernel (also refered as filter) size; s denotes the size of the stride; BN denotes a batch normalization layer; ReLu denotes a 

rectified linear layer, Add denotes a addition with the identity; UnSampling denotes a UnSampling layer that expands the matrix 

dimension using nearest neighbor method, and Padding denotes a padding layer using the reflection padding technique. Total params: 

33,316,481, trainable params: 33,305,857, non-trainable params: 10,624. 

Part Layer Output Shape 

Input (96,200,24,1) 

Encode 1 Conv3D(c32k3s2)/BN/ReLu (48,100,12,32) 

Encode 2 Conv3D(c64k3s1)/BN/ReLu (48,100,12,64) 

Encode 3 Conv3D(c128k3s2)/BN/ReLu (24,50,6,128) 

Encode 4 Conv3D(c128k3s1)/BN/ReLu (24,50,6,128) 

Encode 5 Conv3D(c256k3s2)/BN/ReLu (12,25,3,256) 

Encode 6 Conv3D(c256k3s1)/BN/ReLu (12,25,3,256) 

ResConv 1 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 2 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 3 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 4 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 5 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

ResConv 6 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256) 

Decode 6 UnSampling/Padding/Conv3D(c256k3s1)/BN/Relu (12,25,3,256) 

Decode 5 UnSampling/Padding/Conv3D(c256k3s2)/BN/Relu (24,50,6,256) 

Decode 4 UnSampling/Padding/Conv3D(c128k3s1)/BN/Relu (24,50,6,128) 

Decode 3 UnSampling/Padding/Conv3D(c128k3s2)/BN/Relu (48,100,12,128) 

Decode 2 UnSampling/Padding/Conv3D(c64k3s1)/BN/Relu (48,100,12,64) 

Decode 1 UnSampling/Padding/Conv3D(c32k3s2)/BN/Relu (96,200,24,32) 

Output Conv3D(c1k3s1) (96,200,24,1) 

13 
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Appendix F. xCO 𝟐 , yCO 𝟐 , and fluid densities CNN architecture 

Table F.6 

Table F.6 

xCO 2 , yCO 2 , gas phase density, and liquid phase density CNN architecture. Conv3D denotes a 3D convolutional layer; c denotes the 

number of channels in the layer output; k denotes the kernel (also referred to as filter) size; s denotes the size of the stride; BN denotes a 

batch normalization layer; ReLu denotes an rectified linear activation layer, Add denotes a addition with the identity; UnSampling 
denotes a UnSampling layer that expands the matrix dimension using nearest neighbor method, and Padding denotes a padding layer 

using the reflection padding technique. Total params: 8,337,057, trainable params: 8,331,745, non-trainable params: 5312. 

Part Layer Output Shape 

Input (96,200,24,3) 

Encode 1 Conv3D(c16k3s2)/BN/ReLu (48,100,12,16) 

Encode 2 Conv3D(c32k3s1)/BN/ReLu (48,100,12,32) 

Encode 3 Conv3D(c64k3s2)/BN/ReLu (24,50,6,64) 

Encode 4 Conv3D(c64k3s1)/BN/ReLu (24,50,6,64) 

Encode 5 Conv3D(c128k3s2)/BN/ReLu (12,25,3,128) 

Encode 6 Conv3D(c128k3s1)/BN/ReLu (12,25,3,128) 

ResConv 1 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

ResConv 2 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

ResConv 3 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

ResConv 4 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

ResConv 5 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

ResConv 6 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

ResConv 7 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128) 

Decode 6 Unpool/Padding/Conv3D(c128k3s1)/BN/Relu (12,25,3,128) 

Decode 5 Unpool/Padding/Conv3D(c128k3s2)/BN/Relu (24,50,6,128) 

Decode 4 Unpool/Padding/Conv3D(c64k3s1)/BN/Relu (24,50,6,64) 

Decode 3 Unpool/Padding/Conv3D(c64k3s2)/BN/Relu (48,100,12,64) 

Decode 2 Unpool/Padding/Conv3D(c32k3s1)/BN/Relu (48,100,12,32) 

Decode 1 Unpool/Padding/Conv3D(c16k3s2)/BN/Relu (96,200,24,16) 

Output Conv3D(c1k3s1) (96,200,24,1) 

Appendix G. Multivariate regression 

Using the data set described above, we randomly split 80% of the 

data into the training set and 20% into the validation set to develop the 

relationship between sweep efficiency, solubility trapping and a large 

variety of dimensionless variables. The variables include dimensionless 

numbers such as Bond Number ( 𝑁 𝑏 = Δ𝜌𝑔𝑏 𝑟𝑒𝑠 ∕ 𝑃 𝑒 where 𝑏 𝑟𝑒𝑠 is reservoir 

thickness), Capillary number ( 𝑁 𝑐 ), and Gravity number ( 𝑁 𝑔 ), as well 

as dimensionless reservoir properties, including permeability ( 𝑘 ∕ 𝑘 𝑟𝑒𝑓 ), 
initial pressure ( 𝑃 ∕ 𝑃 𝑟𝑒𝑓 ), injection rate ( 𝑟 𝑖𝑛𝑗 ∕ 𝑟 𝑟𝑒𝑓 ), perforation thickness 

to reservoir thickness ( 𝑏 𝑝𝑒𝑟𝑓 ∕ 𝑏 𝑟𝑒𝑠 where 𝑏 𝑝𝑒𝑟𝑓 is perforation thickness), 

perforation depth to reservoir thickness ( 𝑙 𝑝𝑒𝑟𝑓 ∕ 𝑏 𝑟𝑒𝑠 where 𝑙 𝑝𝑒𝑟𝑓 is perfo- 

ration depth from the reservior top), irreducible water saturation ( 𝑆 𝑤𝑖 ), 

and capillary pressure curve scaling factor ( 𝜆 in Eq. (7) ). We also in- 

vestigated various combinations and variations (such as reciprocals) of 

these aforementioned variables. 

Using those relationships to inform our model, we ran a sequence of 

single-variable and multi-variable linear and nonlinear regressions on a 

training data set. We used forward variable selection with criteria of 𝑅 

2 , 

Adjusted 𝑅 

2 , and root mean squared error (RMSE) to assess the quality 

of the model. The Adjusted 𝑅 

2 penalizes additional variables to reduce 

the number of variables used in the prediction. Concurrently, we used 

the Normal Q-Q plot to examine whether the residuals were normally 

distributed; the scale-location plot to monitor the constant variance as- 

sumption; the residuals versus fitted values plot to evaluate whether 

the data set shows non-constant variance or non-linear trends; and the 

Cook’s distance plots to identify outliers that might significantly influ- 

ence the model. 

Using these diagnostic plots and the quality criterion, we discovered 

the optimal model for sweep efficiency with 𝑁 𝑏 , 𝑟 𝑖𝑛𝑗 ∕ 𝑟 𝑟𝑒𝑓 , and 𝑆 𝑤𝑖 , and 

for solubility trapping, a model with 𝑆 𝑤𝑖 , 𝑁 𝑏 , 𝜆, 𝑘 𝑟𝑒𝑓 ∕ 𝑘 , 𝑃 ∕ 𝑃 𝑟𝑒𝑓 , and 

𝑇 ∕ 𝑇 𝑟𝑒𝑓 . Details on the models’ parameters and criterion results are sum- 

marized in Table G.7 . 

Table G.7 

Prediction ranges, constants, quality criterion, and term standard errors for the sweep efficiency and solubility trapping estimation 

equations. Standard error for each term is calculated based on the term value and the training set. 

Sweep efficiency category parameter value unit 

Prediction range 𝑁 𝑏 10 to 450 - 

𝑟 𝑖𝑛𝑗 0.02 to 2.0 MT/yr 

𝑆 𝑤𝑖 0.1 to 0.3 - 

Constant 𝑟 𝑟𝑒𝑓 1 MT/yr 

𝜖 0.01266 - 

Standard error 𝑙𝑛 ( 𝑁 𝑏 ) 3.56e-03 - 

𝑁 𝑏 4.38e-05 - 

𝑙𝑛 ( 𝑟 𝑖𝑛𝑗 
𝑟 𝑟𝑒𝑓 

) 2.32e-03 - 

𝑆 𝑤𝑖 3.02e-02 - 

( continued on next page ) 
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Table G.7 ( continued ) 

Sweep efficiency category parameter value unit 

Quality criterion training RMSE 0.109 - 

training R-Squared 0.964 - 

training Adjusted R-Squared 0.964 - 

validation RMSE 0.116 - 

validation R-Squared 0.962 - 

validation Adjusted R-Squared 0.962 - 

Solubility trapping category parameter value unit 

Prediction range 𝑆 𝑤𝑖 0.1 to 0.3 - 

𝑁 𝑏 10 to 450 - 

𝑘 5 to 1000 mD 

𝜆 0.3 to 0.7 - 

𝑃 80 to 160 bar 

𝑇 40 to 100 C ◦

Constant 𝑘 𝑟𝑒𝑓 1 mD 

𝑃 𝑟𝑒𝑓 250 bar 

𝑇 𝑟𝑒𝑓 40 C ◦

𝜖 6.0165e-5 - 

Standard error 𝑙𝑛 ( 𝑁 𝑏 ) 2.10e-04 - 
𝑘 𝑟𝑒𝑓 

𝑘 
3.94e-03 - 

𝜆 1.28e-03 - 

𝑆 𝑤𝑖 2.42e-03 - 
𝑇 

𝑇 𝑟𝑒𝑓 
6.30e-04 - 

𝑃 

𝑃 𝑟𝑒𝑓 
2.27e-03 - 

Quality criterion training RMSE 0.008 - 

training R-Squared 0.845 - 

training Adjusted R-Squared 0.845 - 

validation RMSE 0.008 - 

validation R-Squared 0.833 - 

validation Adjusted R-Squared 0.834 - 
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