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A B S T R A C T   

A deep-learning-based surrogate model capable of predicting flow and geomechanical responses in CO2 storage 
operations is presented and applied. The 3D recurrent R-U-Net model combines deep convolutional and recurrent 
neural networks to capture the spatial distribution and temporal evolution of 3D saturation and pressure fields 
and 2D surface displacement maps. The method is trained using high-fidelity simulation results for 2000 storage- 
aquifer realizations characterized by multi-Gaussian porosity and log-permeability fields. Detailed comparisons 
between surrogate model and full-order simulation results for new storage-aquifer realizations are presented. The 
saturation, pressure and surface displacement fields provided by the surrogate model display a high degree of 
accuracy, for both individual realizations and ensemble statistics. The recurrent R-U-Net surrogate model is 
applied with a rejection sampling procedure for data assimilation. Although the (synthetic) observations consist 
of only a small number of surface displacement measurements, significant uncertainty reduction in pressure 
buildup at the caprock is achieved.   

1. Introduction 

Carbon capture, utilization and storage (CCUS) is expected to play an 
important role in reducing greenhouse gas emissions to the atmosphere. 
In CCUS, supercritical CO2 is injected into deep brine aquifers or 
abandoned oil reservoirs for permanent storage. According to a recent 
assessment by the International Energy Agency (International Energy 
Agency, 2020), in the Sustainable Development Scenario, a total of 650 
megatonnes (Mt) per year of anthropogenic CO2 is required to be 
geologically sequestered by 2030. This increases to 5266 Mt/year by 
2050. Current large-scale commercial CCUS projects have a capacity of 
only about 40 Mt/year. Thus, worldwide we will need about 150 pro-
jects, at the 4 Mt/year scale (which is the scale considered in this work) 
by 2030 to satisfy the Sustainable Development Scenario. Fast and ac-
curate predictions of flow and geomechanics will be required in order to 
effectively manage these large-scale storage operations. 

The modeling of the geomechanical response of the formation is very 
important in CCUS operations because excessive pressure buildup can 
induce fracturing of the caprock, or activate pre-existing faults, through 
which CO2 or brine can leak. The numerical simulation of coupled flow 
and geomechanics problems can be computationally prohibitive, 

however. This leads to significant challenges in the practical application 
of data assimilation (history matching) and uncertainty quantification, 
both of which require large numbers of forward simulations. Effective 
surrogate models for CO2 storage will therefore be very useful in these 
settings. 

Our goal in this work is to develop a deep-learning-based surrogate 
model to treat coupled flow and geomechanics in carbon storage oper-
ations. The resulting model will then be applied for data assimilation, 
using surface displacement data, to estimate aquifer properties and thus 
reduce uncertainty in pressure buildup at the caprock. The 3D surrogate 
model, which is trained to predict pressure and CO2 saturation 
throughout the storage aquifer along with surface (ground-level) verti-
cal deformation, represents an extension of our recently developed 2D 
and 3D surrogate models for two-phase subsurface flow in the absence of 
geomechanical effects (Tang et al., 2020; 2021). 

A number of investigators have developed and applied numerical 
models for coupled flow and geomechanics in carbon storage operations 
(Fu et al., 2021; Fuchs et al., 2019; Ju et al., 2021; Li and Laloui, 2016; 
Shi et al., 2013; Talebian et al., 2013; Vilarrasa et al., 2010). Vilarrasa 
et al. (2010) modeled an axisymmetric reservoir-caprock system using 
hydromechanical coupling to evaluate the probability of reactivation or 
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the creation of fractures, while Eshiet and Sheng (2014) introduced a 
discrete element method for the coupled problem. Shi et al. (2013) 
conducted a simulation study to match InSAR surface uplift data for the 
In Salah (Algeria) CO2 storage project. Li and Laloui (2016) also studied 
the In Salah project, using a model that included flow, geomechanical 
and thermal effects. Their goal was to predict surface deformation and 
assess the effects of Biot’s coefficient and temperature. Additional 
studies involving coupled flow and geomechanics in CO2 storage settings 
were reviewed by Rutqvist et al. (2019). In this work we apply a 
computational framework that couples multiphase flow and geo-
mechanics to model poroelastic rock response during CO2 injection. The 
numerical approach entails a sequential-implicit fixed-stress scheme to 
couple a multiphase flow module and a mechanics module (Fu et al., 
2021; Kim et al., 2011). 

Surrogate models, also referred to as proxy models, can be used to 
replace computationally expensive forward models in problems 
requiring many related simulation runs. Example application areas 
include data assimilation, optimization, and uncertainty quantification. 
Surrogate models can be classified into simplified physical/numerical 
models and statistical (e.g., deep learning) methods. Reduced-order 
numerical models based on proper orthogonal decomposition (POD), 
for example, have been developed for problems involving coupled flow 
and geomechanics by Florez and Gildin (2019) and Jin et al. (2020). 
Neither of these studies, however, was performed in the context of 
geological carbon storage. 

Deep-learning-based procedures approximate the input-output rela-
tionship of simulation data using statistical tools. Tang et al. (2020, 
2021) developed recurrent R-U-Net surrogate models, for 2D and 3D 
two-phase subsurface flow problems, which combine a residual U-Net 
with convLSTM networks to predict the evolution of the saturation and 
pressure fields. A residual U-Net was additionally used, in an autore-
gressive strategy, to predict flow response in 2D problems with varying 
well-control specifications (Jiang et al., 2021). Deep-learning-based 
surrogate models have also been implemented for CO2 storage prob-
lems. Mo et al. (2019) developed a deep neural network framework to 
forecast CO2 plume movement for random 2D permeability fields, while 
Wen et al. (2021) devised a general framework for predicting CO2 plume 
location in axisymmetric (single-well) scenarios. There have been a 
number of other deep neural network models for subsurface flow and 
transport in applications other than CO2 storage. Some of these studies 
are discussed by Tang et al. (2020, 2021). To our knowledge, the 
development of a deep-learning-based surrogate for CO2 storage with 
coupled flow and geomechanics, which is a key goal of this work, has yet 
to be accomplished. 

The prediction of the pressure field and plume location, and the 
identification of leaks, is important for the assessment of risk in CO2 
storage operations. Uncertainty in these essential quantities can be 
reduced through use of surveillance/monitoring data in conjunction 
with data assimilation procedures. Several studies (Cameron et al., 
2016; González-Nicolás et al., 2015; Jung et al., 2015), for example, 
have used pressure monitoring data for leak detection. Chen et al. 
(2020) used pressure and CO2 saturation data at monitoring wells to 
reduce uncertainty in plume location. Seismic data can also be incor-
porated for storage-aquifer characterization (Liu and Grana, 2020). The 
models used in these papers did not include coupled flow and geo-
mechanics. There have, however, also been data assimilation studies for 
CO2 storage that included geomechanical effects. de la Torre Guzman 
et al. (2014) considered compartmentalized aquifers and estimated fault 
transmissibility and near-well permeability using injection well pressure 
and surface deformation data. Jahandideh et al. (2021) used micro-
seismic data to estimate rock properties including permeability and 
Young’s modulus. Both of these studies took properties to be constant 
within a region/compartment, and both applied ensemble-based 
methods for the inversion. 

A number of researchers have addressed data assimilation in other 
types of coupled flow-geomechanics systems. Wilschut et al. (2011) used 

surface subsidence and production data, with an ensemble Kalman filter 
method, to estimate fault transmissibilities in a pseudo-3D gas-bearing 
compartmentalized reservoir. Similarly, Jha et al. (2015) applied an 
ensemble smoother (ES) to estimate rock properties in a 3D homoge-
neous gas reservoir by assimilating both surface deformation and well 
data. ES was also applied by Zoccarato et al. (2016) to estimate geo-
mechanical parameters such as Poisson’s ratio in a 3D homogeneous gas 
storage model using surface displacement data. Tang (2018) applied 
both derivative-free optimization and an ES procedure to invert for 
(layered) permeability and Young’s modulus in 2D models using well 
production data and surface displacement data. These studies, however, 
only involved the estimation of a limited number of parameters in ho-
mogeneous or layered models; i.e., detailed rock property fields were 
not considered. In addition, the data assimilation algorithms used in the 
studies with 3D models were restricted to ensemble-based methods 
because of the high computational demands associated with the forward 
modeling. In recent work, Alghamdi et al. (2021, 2020) developed an 
adjoint-gradient inversion procedure to determine permeability fields in 
groundwater-aquifer settings from surface deformation data. The 
permeability fields considered in these studies were areally heteroge-
neous (and characterized by Gaussian fields), but were assumed to have 
no variation in the vertical direction. 

In this study, we extend the 3D recurrent R-U-Net surrogate model 
developed by Tang et al. (2021) to model coupled flow and geo-
mechanics in CO2 storage settings. The problem domain in the 
high-fidelity solution includes the storage aquifer, a surrounding region, 
overburden (which extends up to the Earth’s surface), and bedrock. 
Extensive domains of this type are required for the proper modeling of 
geomechanical effects. The storage aquifer is characterized by random 
3D multi-Gaussian permeability and porosity fields of prescribed cor-
relation structure. The surrogate model is trained to predict the 3D 
saturation and pressure fields in the storage aquifer as well as the ground 
(surface-level) 2D vertical displacement field. We apply the overall 
framework to solve an inverse problem in which synthetic surface 
deformation data are used to predict the detailed permeability and 
porosity fields in the aquifer. A rigorous rejection sampling algorithm is 
applied. The resulting posterior models are then used to predict pressure 
buildup at the top of the storage reservoir. 

This paper proceeds as follows. In Section 2, we first present the 
coupled flow and geomechanics equations applicable for CO2 seques-
tration. We then describe the recurrent R-U-Net surrogate model and 
associated data-processing and training procedures. In Section 3, the 3D 
surrogate model is applied for coupled flow (CO2-brine) and geo-
mechanics problems. In the simulations, CO2 injection is accomplished 
via four vertical wells. Our specific interest is in predicting solutions for 
new geomodels characterized by multi-Gaussian random fields. A 
detailed assessment of surrogate model accuracy is presented. Next, in 
Section 4, the trained surrogate model is applied for data assimilation. 
We conclude in Section 5 with a summary and suggestions for future 
research directions. 

2. Governing equations and surrogate model 

In this section, we present the governing equations for coupled 
multiphase flow and geomechanics used to model CO2 storage opera-
tions. The general simulation setup and solution variables are then 
discussed. Next, the recurrent R-U-Net surrogate model for the coupled 
system, along with the training process and data preprocessing, are 
described. 

2.1. Governing equations for coupled problem 

In the formulation for the coupled problem, the multiphase fluid and 
solid skeletons are treated as overlapping continua. The governing 
equations for the flow problem involve statements of mass conservation 
for water and CO2 components, which flow in two phases, referred to as 
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the aqueous and gaseous phases. The conservation equations are 
expressed as: 

∇⋅

(
∑

j
ρjx

r
j vj

)

+ qr =
∂
∂t

(
∑

j
ϕρjSjxr

j

)

, (1)  

where subscript j = a indicates the aqueous phase and j = g the gaseous 
phase, superscript r = w denotes the water component and r = c the CO2 
component, ρj is phase density, xr

j is the mass fraction of component r in 
phase j, vj is the Darcy velocity (given below), qr represents the source/ 
sink term, t is time, ϕ is true porosity (defined as the ratio of the pore 
volume to the bulk volume in the deformed configuration), and Sj is the 
phase saturation. 

The Darcy velocity for phase j, vj, is given by 

vj = −
kkrj
(
Sj
)

μj

(
∇pj − ρjg∇z

)
, (2)  

where k is the absolute permeability tensor, krj, μj and pj denote relative 
permeability, viscosity and fluid pressure of phase j, respectively, g is 
gravitational acceleration, and z is depth. The phase pressures are 
related to each other through the capillary pressure pc; i.e., pc = pg − pa, 
with pc(Sg) a prescribed function. The system is closed by enforcing Sg +

Sa = 1. 
The governing quasi-static geomechanical equations are derived 

from the linear-momentum balance in the matrix, expressed as 

∇⋅σ + ρmg∇z = 0. (3)  

Here σ denotes the Cauchy stress tensor and the composite matrix 
density ρm is a volume weighted average of phase densities ρj and rock 
density ρrock, i.e., 

ρm = ϕ
∑

j
Sjρj + (1 − ϕ)ρrock. (4)  

From poroelasticity theory (Biot, 1941) and the assumption of small 
linearly elastic deformation, σ can be related to fluid pressure and solid 
displacement via: 

σ = C : ϵ − bpe1, (5)  

where C is a fourth-order stiffness tensor for the solid skeleton (associ-
ated with the drained-isothermal elastic moduli), ϵ denotes the strain 
tensor, with ϵ = 1

2 (∇d+∇⊺d) and d the displacement vector, b is Biot’s 
coefficient, pe denotes the equivalent pore pressure derived from pe =
∑

jSjpj (Coussy, 2004), and 1 is the second-order identity tensor. 
The fluid mass balance Eq. (1) and geomechanics momentum con-

servation Eq. (3) are tightly coupled through poromechanics (Biot, 
1941; Coussy, 2004). This coupled flow and geomechanics system is 
solved using a fixed-stress sequential implicit procedure (Kim et al., 
2011), which has been proven to yield accurate results with uncondi-
tional stability. In the sequential implicit scheme, the multiphase flow 
and geomechanical problems are solved iteratively, by updating the true 
porosity ϕ from its previous state through application of: 

dϕ =
b − ϕ

Kdr
(dpe + dσv), (6)  

where σv denotes volumetric total stress and Kdr is the drained- 
isothermal bulk modulus. 

The flow equations are discretized using a finite volume formulation, 
with solutions computed for each finite volume block/cell. The geo-
mechanical equations are discretized using a Galerkin finite element 
formulation. The numerical implementation of the fixed-stress iterative 
scheme follows the description in Fu et al. (2021). In this work, all 
high-fidelity simulations (HFS), by which we mean the numerical so-
lution of Eqs. (1), (3) and (5), are performed using GEOS, a 

high-performance computing simulation environment for geoscience 
applications (Ju et al., 2020; Settgast et al., 2017). 

2.2. Variables and domains in HFS and surrogate model 

We can represent the HFS described above as 
[
pf , Sf , df

]
= f
(
mf
)
, (7)  

where f denotes the numerical simulation, mf ∈ Rnb is the specified 
geomodel, and pf ∈ Rnb×nts , Sf ∈ Rnb×nts and df ∈ R3×nd×nts represent the 
dynamic gaseous-phase pressure, gaseous-phase saturation and 
displacement fields (the displacement field has a component in each 
coordinate direction). Here nb is the total number of finite volume grid 
blocks in the full-order overall model, nd is the total number of finite 
element nodes in the full-order model, and nts is the number of time steps 
in the HFS. Note that pf , Sf and df are the primary variables computed in 
the HFS (i.e., all other dependent quantities can be determined from 
these variables). 

In the numerical setup for coupled flow and geomechanics problems 
in carbon storage simulations, the overall model domain is much larger 
than the storage aquifer domain. This is necessary in order to correctly 
simulate the geomechanical response. The problem specification used in 
this study, shown in Fig. 1, illustrates the setup. Here the storage aquifer 
domain is of size 8000 m× 8000 m× 120 m, and is represented by 40 ×

40 × 12 grid blocks. The full domain is much larger – 20 km× 20 km×

2 km, represented by 60 × 60 × 37 grid blocks. The overburden rock 
(red region in Fig. 1), bedrock (green region), and the surrounding 
domain (blue region) are the additional domains required for the geo-
mechanical solution. 

When data assimilation is performed, flow simulations for a large 
number (e.g., O(103 − 106) of candidate geomodels mf are required. In 
this work we consider the porosity and (isotropic) permeability fields in 
the storage aquifer to be uncertain, and we fix all other geomodel pa-
rameters. This includes porosity, permeability, Young’s modulus and 
Poisson’s ratio in the surrounding domain, overburden and bedrock, and 
Young’s modulus and Poisson’s ratio in the storage aquifer. These 
properties could also be varied if necessary, but we would then require 
more training simulations for the surrogate model. In addition, most of 
these properties are expected to have a relatively small impact on the 
key quantities of interest, such as plume location and pressure buildup in 
the storage aquifer. 

Consistent with the discussion above, new storage-aquifer geomodels 
are denoted ms ∈ Rns , and the corresponding saturation and pressure 
states are defined as Ss ∈ Rns×nts and ps ∈ Rns×nts , where ns indicates the 
number of grid blocks in the storage aquifer. Another quantity of interest 
is the vertical displacement map at the Earth’s surface, directly above 
the storage aquifer. This is denoted as dg ∈ Rng×nts , where ng is the 
number of surface nodes aligned with (i.e., directly above) the storage 
aquifer. Although displacement is computed in the x, y and z directions, 
dg only includes the vertical displacement, consistent with the data 
available from InSAR (Bürgmann et al., 2000) measurements. 

The storage aquifer geomodels ms considered in this study are 
characterized by multi-Gaussian permeability and porosity fields. For a 
given geomodel, the permeability ks ∈ Rns and porosity ϕs ∈ Rns de-
scriptions are derived from the same multi-Gaussian field ms ∈ Rns . 
These fields are generated using the geomodeling tool SGeMS (Remy 
et al., 2009). For a particular grid block i in the storage aquifer, the 
isotropic permeability (ks)i and porosity (ϕs)i are given by 
(ks)i = exp(a(ms)i +b) and (ϕs)i = c(ms)i + d, where a, b, c and d are 
specified constants. In this work we specify c = 0.05 and d = 0.3. 
Porosity will thus be positive unless the sampled value of the standard 
normal variable (ms)i is six standard deviations below the mean. If a 
negative porosity were obtained, it would be set to a very small but 
positive value. This was not necessary in our runs, however, as the 
minimum observed value of (ϕs)i was about 0.07. Other modeling 
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parameters are kept fixed, though some of these parameters are speci-
fied to have different values in different domains, as discussed in Section 
3.1. 

Despite the fact that the dynamic quantities of interest (Ss, ps, dg) are 
restricted to the storage aquifer region and the ground surface directly 
above the storage aquifer, the coupled problem must still be solved over 
the full domain (which leads to high computational expense). An 
advantage of the deep-learning-based surrogate model developed here is 
that it can be trained to predict only the quantities of interest in the 
domains of interest. This leads to savings in the time required for 
training and predictions. 

Given a number of HFS training ‘samples’ collected from the nu-
merical simulator, a 3D recurrent R-U-Net is trained to serve as a sur-
rogate. We use f̂ to denote the recurrent R-U-Net surrogate and 
Ŝs ∈ Rns×nt , p̂s ∈ Rns×nt and d̂g ∈ Rng×nt to represent the surrogate-model 
predictions for gaseous-phase saturation, gaseous-phase pressure, and 
surface displacement. Note that these quantities are provided at nt time 

steps rather than at the nts HFS time steps (with nt typically much less 
than nts), as the surrogate is applied to predict the states only at key time 
steps. The recurrent R-U-Net surrogate model is thus expressed as 
[
p̂s, Ŝs, d̂g

]
= f̂ (ms). (8)  

For conciseness, in our discussion below we will use ̂x to denote Ŝs, p̂s or 
d̂g, and x to indicate the corresponding reference solutions generated 
from the HFS. 

2.3. Recurrent R-U-Net surrogate model for coupled problems 

The 3D recurrent R-U-Net implemented in this work is similar to the 
network used in our previous work for two-phase flow in the absence of 
geomechanical effects (Tang et al., 2021). Here we describe the overall 
procedure, with emphasis on the new treatments required for the 
coupled problem. 

Fig. 1. Illustration of the overall model (left) and storage aquifer (right). The yellow, red, blue and green regions denote the storage aquifer, overburden rock, 
surrounding domain, and bedrock, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Schematic of 3D residual U-Net (R-U-Net) used in this work. This network entails encoding and decoding nets. Feature maps F1 to F4 extracted in the 
encoding net are concatenated with the upsampled features in the decoding net to generate predictions for the states. 
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The residual U-Net (referred to as R-U-Net), illustrated in Fig. 2, is a 
key component of the recurrent R-U-Net architecture. U-Nets provide 
robust architectures for high-dimensional matrix-wise regression prob-
lems (Ronneberger et al., 2015). In our setting, this network is used to 
capture the spatial correlation between the input rock properties ms and 
the output dynamic states. U-Nets contain encoding and decoding nets, 
with the extracted feature maps F1 to F4 in the encoding net concate-
nated with the upsampled features in the decoding net, as shown in 
Fig. 2. This linkage between the encoding and decoding pathways fa-
cilitates information flow in training, and leads to improved accuracy in 
the predicted states (Tang et al., 2020; 2021). Residual layers (He et al., 
2016) are added to process the most compressed feature F5. The residual 
U-Net architecture thus described can provide high accuracy for 
steady-state predictions, but the network in Fig. 2 is not designed to 
capture temporal dynamics. 

In order to capture the time evolution of the saturation, pressure and 
displacement states, we incorporate the R-U-Net into a convolutional 
long-short term memory network (convLSTM). The convLSTM network 
(Xingjian et al., 2015) introduces recurrency, enabling us to capture 
dynamics associated with high-dimensional features. The overall 
framework, referred to as the 3D recurrent R-U-Net, is thus able to 
represent the temporal evolution of the 3D (saturation and pressure) and 
2D (surface displacement) fields of interest. 

The architecture of the 3D recurrent R-U-Net is shown in Fig. 3. The 
encoding net extracts feature maps F1 to F5. These maps incorporate 
effects at a range of scales, with F5 representing the most compressed/ 
global set of features. Importantly, the convLSTM propagates only F5, 
meaning this is the only feature map that varies in time. The resulting 
representations are denoted Ft

5, t = 1,…,nt, where nt is the number of 
time steps at which the surrogate model provides predictions (recall nt 

< nts). The Ft
5 maps are then combined with the features F1 to F4 and 

upsampled to provide the predicted state maps ̂xt , t = 1,…,nt. The use of 
the same F1 to F4 at all time steps leads to a reduction in the number of 
tunable network parameters and thus to savings in training time. 

The performance of the recurrent R-U-Net described above is rela-
tively insensitive to small changes in its architecture. Adding or 
removing one layer in the encoding net (and in the corresponding 
decoding net), for example, does not affect the performance signifi-
cantly. The use of additional layers may lead to a slight improvement in 
prediction accuracy, though this increases the number of trainable pa-
rameters and thus the computational cost. For the problems considered 
here and in our previous studies, we have found that four encoding 
layers (and four corresponding decoding layers) provide an appropriate 
balance between prediction accuracy and computational efficiency. 

As discussed in Section 2.2, the domain for the state predictions x̂t 

need not coincide precisely with that from the HFS. Thus, rather than 
predict vertical displacement at the ng surface nodes lying above the 
storage aquifer, we predict this quantity at the tops of the blocks in the 
uppermost layer of the overburden domain. These displacements (for 
the HFS), denoted dgb ∈ Rngb×nt , are determined from dg ∈ Rng×nt through 
a simple averaging. More specifically, the block-top displacement value 
is computed as the average of the four nodal values at the top surface. 
We thus have ngb = ng − ndx − ndy + 1, where ndx and ndy are the number 
of nodes in the x and y directions at the top surface (above the storage 
aquifer), with ng = ndx × ndy. Note we need these maps at only nt (rather 
than nts) time steps. 

Our prediction of d̂gb ∈ Rngb×nt is accomplished using the same 
recurrent R-U-Net architecture that is used for saturation and pressure. 
This means that we actually predict a 3D field, and then project it to the 

target 2D map d̂
t
gb at each time step. The recurrent R-U-Net could, in 

principle, be modified to predict the 2D maps directly, but this would 
require additional exploration of network architecture and associated 
hyperparameters. Our approach entails copying and concatenating the 
surface deformation map dt

gb nl times, where nl is the number of layers in 
the storage aquifer. With this treatment, the displacement data are of the 

same dimension as St
s and pt

s. The requisite 2D map d̂
t
gb is then con-

Fig. 3. Schematic of the recurrent R-U-Net architecture. The convLSTM network accepts the global feature map F5 from the encoding net and generates a sequence of 
feature maps Ft

5, t = 1, …, nt . These are decoded, separately, into a sequence of predictions for the states x̂t , t = 1, …, nt , using the same decoding net. Here x̂ 
represents the predicted states Ŝs, p̂s and d̂g . Figure modified from Tang et al. (2021). 
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structed as the average of the result over the nl layers. As we will see, this 
approach provides accurate predictions, while maintaining consistency 
in the network for all of the predicted quantities. 

For full details on the recurrent R-U-Net architecture used in this 
study, please see Appendix B in Tang et al. (2021). A key advantage of 
this network is its flexibility in terms of reuse for different problems. 
This includes the ability to predict 2D maps along with 3D fields, which 
enables the convenient handling of surface displacement described 
above. 

2.4. Data preprocessing and network training 

A set of 2000 high-fidelity simulations of the coupled problem, with 
each run corresponding to a different storage-aquifer realization ms, is 
performed to provide the training data. The output state maps at pre-
scribed time steps are saved. The boundary conditions, along with the 
well locations and CO2 injection-rate specifications, are the same in all 
runs. 

Appropriate data preprocessing is necessary to achieve optimal 
network performance. In our previous work (Tang et al., 2020; 2021), 
we considered binary channelized geomodels, which were characterized 
by mi = 0 (background mud) and mi = 1 (sand). Thus no additional 
scaling of the geomodel was required. Saturation values fall between 
0 and 1, so no processing was required for these fields. Pressure fields 
were normalized through use of ‘detrending’ and ‘min-max’ scaling, 
which were found to provide better results than time-independent 
normalization. 

In this study, the input multi-Gaussian fields ms, which are used to 
construct logk and ϕ, are standard normal variables and are thus O(1). 
Thus no preprocessing is applied. Saturation fields Ss, again between 
0 and 1, can also be used directly. For the pressure and surface 
displacement fields, we apply detrending and standardization, which we 
found to provide slightly better accuracy than our previous treatments 
(Tang et al., 2020; 2021). The specific preprocessing for pressure and 
surface displacement is given by 

x̃t
i =

xt
i − mean

([
xt

1,…, xt
nsmp

])

std
([

xt
1,…, xt

nsmp

] , i = 1,…, nsmp, t = 1,…, nt, (9)  

where nsmp is the number of training samples. With this approach, each 
pressure and displacement field at time step t, xt

i , is normalized by 
subtracting the mean field (over all nsmp samples) and dividing each 
element by its standard deviation at that time step. 

The recurrent R-U-Net weights, denoted by θ, are then optimized to 
minimize the difference between the direct neural network predictions 
̃̂x

t 
(before inverse transform) and the normalized HFS reference ̃xt. This 

optimization can be expressed as 

θ∗ = argmin
θ

1
nsmp

1
nt

∑nsmp

i=1

∑nt

t=1
‖ ̃̂x

t

i − x̃t
i ‖

2

2, (10)  

where θ∗ indicates the optimized neural network parameters. Separate 
θ∗ are determined for the saturation, pressure and displacement fields (i. 
e., we train three networks). Note that the mismatch in all quantities is 
measured in the L2 norm, in contrast to our approach in Tang et al. 
(2021). 

The neural network parameters are determined using the adaptive 
moment estimation (ADAM) optimizer (Kingma and Ba, 2014). The 
batch size is set to 4, and a total of 300 epochs are used to assure 
convergence. Each of the three trainings converges within 5 h on a 
Nvidia Tesla V100 GPU. These trainings can be performed in parallel on 
a single GPU given the small batch size. 

3. Surrogate model evaluation 

In this section, we first describe the setup for the carbon storage 
problem with coupled flow and geomechanics used in our evaluations. 
Results for 3D saturation and pressure fields and 2D surface displace-
ment maps will then be presented. Error statistics and percentile results 
(P10, P50, P90) for key quantities will also be provided. 

3.1. Coupled problem setup 

As discussed in Section 2 and shown in Fig. 1, the overall problem 
corresponds to a domain of dimensions 20 km × 20 km × 2 km (in the x, 
y and z directions). The overall model is defined on a 60 × 60 × 37 grid. 
The grid-block size is constant within the storage aquifer region (cor-
responding to 40 × 40 × 12 blocks), but it increases in the surrounding 
region as we move outwards. The overburden rock and bedrock are of 
thickness 1380 m and 500 m respectively. 

The model contains four injection wells, which are open to flow in all 
12 layers in the storage aquifer. Each well injects fully-saturated su-
percritical CO2 at a constant mass flow rate of 36 kg CO2 per second. This 
is equivalent to 1.135× 109 kg CO2 per year, or 1.135 Mta (megatonnes 
per anum), per well. Thus the total injection into the system is 4.541 
Mta, which corresponds to a large-scale storage operation. The top of the 
overburden rock is subject to atmospheric pressure. The simulation time 
frame is 30 years. 

In this study, pressures at the lateral boundaries of the 20 km × 20 
km overall model are fixed at their initial values. In previous studies, 
both fixed-pressure and no-flow boundary conditions have been applied. 
The impact of different boundary specifications has been considered in 
several studies, including Birkholzer et al. (2015); Deng et al. (2012) and 
Zhang et al. (2016). The setup used here shares some similarities with 
that in Deng et al. (2012), where a simulation domain with lateral extent 
16 km × 16 km and fixed-pressure boundaries was considered. A range 
of domain sizes and boundary conditions were simulated in Zhang et al. 
(2016). One of the models considered was of lateral extent 10 km × 10 
km, again with fixed-pressure lateral boundary conditions. Thus our 
setup is consistent with previous models presented in the literature. It 
should be noted that in our setup (as well as in those discussed above), 
the pressure boundary conditions are ‘felt’ within the storage domain 
during the injection period. In practice, the locations of the boundaries 
and the pressure values specified should be consistent with the regional 
setting, pressure effects from nearby CCUS operations, brine/pressure 
management schemes, etc. We note finally that we do not expect the 
performance of our surrogate model to be strongly affected by these 
boundary specifications. 

As noted in Section 2, the storage aquifer is characterized by multi- 
Gaussian fields generated using SGeMS (Remy et al., 2009). Three re-
alizations of the resulting log-permeability fields are displayed in Fig. 4. 
An exponential variogram model was used, and the correlation lengths 
were specified to be 20 grid blocks in the x and y directions and 5 grid 
blocks in the z direction. The mean and standard deviation of 
log-permeability are 2.5 and 1 respectively, which leads to an (arith-
metic) average permeability of 23 md in the storage aquifer. Porosity is 
computed (block by block) directly from log-permeability, with a mean 
of 0.3 and a standard deviation of 0.05. Permeability and porosity are 
conditioned to well data, meaning all realizations display the same 
properties in well blocks. 

Relevant parameters for the four domains are summarized in Table 1. 
Note that Poisson’s ratio is set to 0.2 and Biot’s coefficient to 1.0 for all 
blocks in the overall model. As is evident from the table, the overburden 
and bedrock are essentially impermeable (k = 10− 7 md), while the 
surrounding region is characterized by k = 300 md. Porosity is set to 0.3 
in overburden rock, bedrock and surrounding regions (the porosity 
values in the impermeable overburden and bedrock have virtually no 
effect on the solution). Young’s modulus is set to 5 GPa in the storage 
aquifer, 50 GPa in the bedrock and 1 GPa in the overburden. The 
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bedrock serves as a rigid boundary and thus has a high Young’s modulus 
value, while the overburden is susceptible to deformation in our model, 
and is therefore characterized by a low Young’s modulus. 

The fluid properties for CO2 and water are obtained from correlations 
developed by Altunin et al. (Altunin, 1968) and steam table equations 
according to IAPWAS-IF97 (Wagner and Kretzschmar, 2008), respec-
tively. At a pressure of 136 bar (corresponding to the top of the storage 
aquifer, at a depth of 1380 m), CO2 viscosity and density are 0.035 cp 
and 484 kg/m3, and water viscosity and density are 0.43 cp and 986 
kg/m3. These properties correspond to those for CO2 and water at a 
temperature of 65 ◦C (and pressure of 136 bar). This aquifer tempera-
ture, at a depth of 1380 m, corresponds to a surface temperature of 
23.6 ◦C and a geothermal gradient of 30 ◦C/km. This gradient is that 
used in Preisig and Prevost (2011) in a study of In Salah, where the 
aquifer temperature was 90 ◦C at a depth of nearly 2 km. Capillary 
pressure and relative permeability parameters are provided in Table 1. 
Here, λ is the exponent coefficient in the Van Genuchten capillary 
pressure model, Sar is the irreducible aqueous-phase saturation 

(required for the capillary pressure and relative permeability models), 
and Pmax is the maximum capillary pressure. The quantity Sgr is the 
gaseous-phase residual saturation, and na and ng are the exponents in the 
Corey relative permeability model. In the GEOS runs, both the phase 
mobilities and the absolute permeabilities were upwinded in the flow 
equations. This treatment leads to improved robustness, though it acts to 
‘mix’ properties at domain boundaries. 

Before presenting surrogate model predictions, we consider the 
sensitivity of the high-fidelity model predictions to the permeability 
values used for the overburden and bedrock. In this assessment, we 
assign these permeabilities to be kover = 10− 5 md, kover = 10− 4 md, and 
kover = 10− 3 md (in all cases we take bedrock permeability equal to 
overburden permeability kover). The baseline value (kover = 10− 7 md) 
corresponds to intact impermeable rock, while the higher values are 
intended to represent impermeable rock with varying amounts of dis-
continuities (such as small-scale fractures). The storage aquifer geo-
model used in this assessment is that shown in Fig. 4c, and all other 
model settings are as defined above. Results for average displacement at 
the Earth’s surface are presented in Fig. 5. This quantity is computed as 
the average at the surface above the four observation locations O1–O4 
(defined later) and the center point of the top layer. We see in Fig. 5 that, 
over the range kover = 10− 7 md to kover = 10− 4 md, variation in the 
overburden and bedrock permeability value has little effect on the 
displacement results of interest. Results are impacted, however, for 
kover = 10− 3 md. Thus we conclude that, for this model, displacement 

Fig. 4. Multi-Gaussian log-permeability realizations honoring hard data at the four injection wells (indicated by white cylinders). The realization in (c) is the ‘true’ 
model used for data assimilation in Section 4. 

Table 1 
Parameters used in the coupled models.  

Storage aquifer parameters Value 

Thickness 120 m 
Permeability Multi-Gaussian field 
Porosity Multi-Gaussian field 
Young’s modulus 5 GPa 

Overburden parameters Value 

Thickness 1380 m 
Permeability 10− 7 md 
Porosity 0.3 
Young’s modulus 1 GPa 

Bedrock parameters Value 

Thickness 500 m 
Permeability 10− 7 md 
Porosity 0.3 
Young’s modulus 50 GPa 

Surrounding region parameters Value 

Permeability 300 md 
Porosity 0.3 

Capillary pressure – Van Genuchten model Value 

λ 0.254 
Sar 0.11 
Pmax 12,500 Pa 

Relative permeability – Corey model Value 

Sar 0.11 
Sgr 0.01 
na 4 
ng 2  

Fig. 5. Average vertical displacement at Earth’s surface for different values of 
overburden and bedrock permeability (denoted kover). Storage aquifer geo-
model is that shown in Fig. 4c. Results are from high-fidelity simulator GEOS. 
Baseline results and those for kover = 10− 5 md overlap. 
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results are not sensitive to the value used for permeability in the over-
burden and bedrock until we exceed kover = 10− 4 md. 

3.2. Recurrent R-U-Net saturation, pressure and displacement fields 

We generate a total of 2000 random realizations of the multi- 
Gaussian storage-aquifer permeability and porosity fields using 
SGeMS. These fields are ‘inserted’ into the overall model description 
(which also includes the other three domains), and high-fidelity nu-
merical simulation is then performed for each model. All runs are con-
ducted using the GEOS simulator (Settgast et al., 2017). The 3D 
saturation and pressure fields in the storage aquifer, and the 2D surface 
displacement maps, are saved at 10 time steps (0.5, 2, 5, 8, 11, 15, 19, 
23, 27, 30 years). These solution states constitute the training data. 

A new set of 500 geomodels is generated and simulated (at high fi-
delity). These results represent the test cases used to assess the perfor-
mance of the surrogate model. Saturation fields within the storage 
aquifer for a particular test case, at three different time steps, are shown 
in Fig. 6. For visual clarity, only grid blocks with CO2 saturation greater 
than 0.01 are displayed (note that we use the term CO2 saturation to 
refer to gaseous-phase saturation). The saturation error for this case 
(quantified later in Eq. (11)) is greater than the median error over the 
500 test cases, so these results can be considered to be representative. 
The upper row in Fig. 6 shows the recurrent R-U-Net surrogate pre-
dictions, while the lower row displays the reference HFS results. We 
observe variability in the CO2 saturation distributions around the 
different injection wells, despite the fact that they all inject at the same 
rate. There is, nonetheless, very close agreement between the surrogate 
and HFS results. It is evident from Fig. 6c and f that some of the injected 
CO2 has left the storage aquifer (and entered the surrounding region, 
which is not shown in the figure). 

In terms of timing, it takes about 0.8 h of parallel computation (on 32 
cores) to complete a single high-fidelity simulation. The trained surro-
gate, by contrast, can provide batch-wise predictions for 100 geomodels 
in less than 1 s, or ≲0.01 s per realization. Thus the recurrent R-U-Net 
surrogate does indeed provide dramatic speedups for this coupled 
problem. 

Saturation fields at the end of the 30-year simulation time frame, for 

three different realizations, are presented in Fig. 7. The errors for these 
models are all around or above the median error for the full set of test 
cases. Consistent with Fig. 6, we again observe clear agreement between 
the HFS and surrogate model results. There is a reasonable amount of 
variation from case to case, which is evident upon close inspection. For 
example, the top of the plume from the front-most injector is much 
larger in Fig. 7c than in Fig. 7a, and the top of the plume from the right- 
most injector is larger in Fig. 7b than in Fig. 7a or c. The 3D shapes of the 
plumes also vary from realization to realization. The (sometimes subtle) 
variations between realizations are well captured by the recurrent R-U- 
Net model. 

Results for the 3D pressure field in the storage aquifer, for a repre-
sentative test case (with error above the median), are shown in Fig. 8. 
Because we have nonzero capillary pressure in this problem, pressure is 
different in the aqueous and gaseous phases. In all of the pressure results 
in this paper, we present gaseous-phase pressures, which we refer to 
simply as ‘pressure.’ From Fig. 8 we see that pressure displays higher 
local variation at early time (2 years) than at later times. Pressure does 
not continuously increase with time because of the very large sur-
rounding region and pressure boundary conditions in the overall model. 
The correspondence between the surrogate model and the reference HFS 
results is again very close. 

Pressure fields at 30 years, for three different test-case realizations 
(with error near or above the median test-case error), are displayed in 
Fig. 9. We see substantial differences from case to case in near-well 
pressure buildup, with Realization 2 displaying high pressure around 
wells I1 and I4. Despite the variability between and within realizations, 
consistent agreement between the surrogate and HFS results is again 
observed. 

As discussed in Section 2.2, vertical displacements for the grid blocks 
lying directly above the storage aquifer, at the Earth’s surface, are 
computed from the (nodal) finite element geomechanics solution. These 
are the quantities the surrogate model is trained to predict. Results for 
this ground-level vertical displacement are shown in Fig. 10. These re-
sults are for the same realization (and time steps) as in Fig. 8 (which 
displayed pressure fields). The upper and lower rows again show the 
surrogate and HFS results, and we observe a high level of accuracy in the 
surrogate model predictions. The surface displacements reach a 

Fig. 6. CO2 saturation fields from recurrent R-U-Net surrogate model (upper row) and HFS (lower row) for a representative test case at three different times.  
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maximum of 14 cm, which is a substantial amount of deformation. Of 
particular interest is the correspondence between the displacement and 
pressure fields, evident by comparing Figs. 8 and 10. Specifically, the 
maximum pressures are observed near wells I1 and I4, and it is above 
these wells that the maximum displacements occur. 

Surface displacement results for the three test-case models presented 
in Fig. 9 (for pressure) are shown in Fig. 11. These results are all at a time 
of 30 years. Despite the significant differences between the various 
cases, we continue to observe close correspondence between the surro-
gate model and HFS results. The highest near-well pressures are 

observed for well I4 in Realization 2, and the largest vertical displace-
ments are also seen above this well for this realization. Analogously, 
lower near-well pressures and surface displacements are evident for 
Realization 1. 

3.3. Surrogate model errors and percentile predictions 

We now quantify the saturation, pressure and surface displacement 
errors associated with the surrogate model predictions. We compute 
relative errors for these three quantities, defined as 

Fig. 7. CO2 saturation fields from recurrent R-U-Net surrogate model (upper row) and HFS (lower row) for three different test cases at 30 years.  

Fig. 8. Pressure fields from recurrent R-U-Net surrogate model (upper row) and HFS (lower row) for a representative test case at three different times.  
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Fig. 9. Pressure fields from recurrent R-U-Net surrogate model (upper row) and HFS (lower row) for three different test cases at 30 years.  

Fig. 10. Vertical displacement maps from recurrent R-U-Net surrogate model (upper row) and HFS (lower row) for a test case at three different times. These results 
are for the same realization as in Fig. 8. 
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where ne is the number of test cases, ns is the total number of grid blocks 
in the storage aquifer, nt is the number of time steps considered, and ngb 

is the number of grid blocks on the surface above the storage aquifer. A 
constant ϵ = 0.01 is introduced in the denominator of Eq. (11) to avoid 
division by very small values. Note that the pressure error is normalized 
by the difference between the maximum and minimum pressure values 
for test case i at time step t ((ps)

t
i,max − (ps)

t
i,min). This treatment leads to 

larger pressure errors than would be computed if we used the absolute 
pressure value (ps)

t
i,j. 

Applying Eqs. (11)–(13), we obtain δS = 5.3%, δp = 0.31% and δd =

1.2%. These small relative errors demonstrate that the recurrent R-U- 
Net surrogate predicts storage aquifer saturation and pressure, along 
with surface-level vertical displacement, quite accurately. The obser-
vation that δS > δp is consistent with our previous findings (Tang et al., 
2020; 2021). Saturation errors are generally largest in the vicinity of 
fronts. 

We next assess the statistical correspondence in block-wise results 
between the surrogate and HFS models. This evaluation enables us to see 
whether the surrogate model maintains accuracy over a range of 
possible test-case responses. Specifically, for four observation locations 

in the top layer of the storage aquifer (shown in Fig. 12 and denoted 
O1–O4), we compute the 10th, 50th and 90th percentile results for 
saturation and pressure as a function of time. These quantities are 
referred to as the P10, P50 and P90 responses. Each curve can correspond 
to a different realization from time step to time step. 

Saturation and pressure results are presented in Figs. 13 and 14. The 
solid black curves are the target HFS results, and the dashed red curves 
are the surrogate model results. The lower curve represents the P10 
result, the middle curve is P50, and the upper curve P90. Agreement 
between the HFS and surrogate model P10, P50 and P90 results, for both 
saturation and pressure at all four observation locations, is excellent. 
This suggests that the surrogate model is accurate over the full P10–P90 
range for these quantities. The consistent agreement in saturation re-
sults, despite the wide variability for this quantity (evident in the 

Fig. 11. Vertical displacement maps from recurrent R-U-Net surrogate model (upper row) and HFS (lower row) for three different test cases at 30 years. These results 
are for the same realizations as in Fig. 9. 

Fig. 12. Storage aquifer realization showing injection wells I1–I4 (white cyl-
inders) and observation locations O1–O4 (black arrows). 
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difference between the P10 and P90 curves in Fig. 13), is particularly 
noteworthy. 

For surface displacement, the observation locations are at ground 
level, directly above the O1–O4 storage-aquifer locations. The P10, P50 
and P90 results at the four observation locations are shown in Fig. 15. 
Agreement between HFS and surrogate predictions is again very close, 
though there is relatively little variation between the P10 and P90 surface 
displacement curves. Nonetheless, as we will see in Section 4, data of 
this type can still be used in history matching to reduce prediction 
uncertainty. 

4. Data assimilation using recurrent R-U-Net surrogate model 

In this section we apply the recurrent R-U-Net surrogate model for 
data assimilation. A rigorous rejection sampling (RS) procedure is 
applied to provide posterior (history matched) samples conditioned to 
surface displacement data. We first describe the RS procedure, and then 
present data assimilation results. 

4.1. Rejection sampling using PCA-based geomodels 

RS is a formal posterior sampling method that can correctly quantify 
posterior uncertainty. It has the drawback of requiring very large 
numbers of samples and function evaluations, which renders it 
impractical in most settings when HFS is used for the function evalua-
tions. With the surrogate model applied in place of the high-fidelity 
simulator, however, RS can be applied in a much wider range of cases. 

In our example, we construct and evaluate 500,000 realizations of 
the geomodel. Rather than apply the geological modeling software 
SGeMS to generate each realization, we construct these models very 
quickly using principal component analysis (PCA). Following the 
description in Liu and Durlofsky (2021), we construct the PCA basis 

matrix, in a preprocessing step, from a set of 3000 SGeMS models. Then, 
new PCA realizations mpca

s ∈ Rns are constructed through application of 
mpca

s = Φξ+ ms, where Φ ∈ Rns×l is the basis matrix, ms ∈ Rns is the 
mean of the SGeMS models, and ξ ∈ Rl is a random variable, with each 
component sampled independently from N (0,1). The dimension of ξ (l) 
is set to 2000, which acts to retain 95% of the total ‘energy’ in the 
original set of 3000 realizations. This provides mpca

s realizations that are 
essentially indistinguishable visually from SGeMS models while avoid-
ing overfitting. 

Note that, in Tang et al. (2020, 2021), a convolutional neural 
network (CNN)-based parameterization technique (called CNN-PCA) 
was used for realization generation instead of standalone PCA. 
CNN-PCA was required in those studies because the geomodels were 
channelized, and standalone PCA is not applicable for such systems. We 
can, however, directly apply PCA here since the geomodels are 
multi-Gaussian. 

We now present the RS procedure applied in this work. This 
description follows that in Tang et al. (2021), though here we use PCA 
instead of CNN-PCA, and the observed data are surface displacements 
rather than flow rates at wells.  

• Sample each component of ξ ∈ Rl from N (0,1). Construct mpca
s (ξ) as 

described above.  
• Sample a probability p from a uniform distribution in [0,1].  
• Compute the likelihood function L(mpca

s (ξ)) using 

L
(
mpca

s (ξ)
)
= cexp

(

−
1
2
[
f̂
(
mpca

s (ξ)
)
− dobs

]T
C− 1

D

[
f̂
(
mpca

s (ξ)
)
− dobs

]
)

,

(14)  

where c is a normalization constant, f̂ (mpca
s (ξ)) indicates the surro-

gate model predictions for surface displacement for geomodel 

Fig. 13. Comparison of saturation statistics at four observation locations over the full ensemble of 500 test cases. Red and black curves represent P10 (lower), P50 

(middle) and P90 (upper) results from the recurrent R-U-Net surrogate model and the high-fidelity simulator, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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mpca
s (ξ), dobs denotes the observed surface displacement data, and CD 

is the covariance matrix of data measurement error.  
• Accept mpca

s (ξ) if p ≤
L(mpca(ξ))

SL
, where SL is the maximum likelihood 

value over all prior models considered. Otherwise, reject mpca
s (ξ). 

As is evident from the description above, a randomly generated 
realization mpca

s (ξ) is much more likely to be accepted as a posterior 
sample if the predicted surface displacements are close to dobs. Similarly, 
if the mismatch is large, the model has a very low probability of 
acceptance. 

4.2. Problem setup and rejection sampling results 

A randomly selected SGeMS gemodel, which is shown in Fig. 4(c), is 
specified to be the ‘true’ model. High-fidelity simulation is performed on 
this model, and the results are taken as the ‘true’ data dtrue. The observed 
data dobs are obtained by randomly perturbing dtrue with measurement 
error ϵ 

dobs = dtrue + ϵ, (15)  

where ϵ is sampled with 0 mean and covariance CD. In this study the 
observed data correspond to surface displacement data at four obser-
vation locations (above O1–O4) at two different times (5 years and 8 
years after the start of CO2 injection). Thus we have a total of eight 
measurements. The standard deviation of the measurement error is set 
to 5% of the corresponding true data. 

Using a single Nvidia Tesla V100 GPU, it takes less than 1 h for the 
surrogate model to provide the saturation, pressure and surface 
displacement predictions for the 500,000 geomodels evaluated during 
the RS procedure. The time required to generate the PCA realizations is 
negligible. High-fidelity numerical simulation, however, requires about 

0.8 h per run (using 32 CPU cores). Therefore, the total computation 
time to perform this RS assessment using HFS would be about 400,000 h, 
which is clearly impractical. 

With the setup described above, RS accepts 601 models out of the 
500,000 considered. Data assimilation results for (ground-level) surface 
displacement are shown in Fig. 16. In this figure, the gray regions 
indicate the prior P10–P90 intervals, the red circles denote the observed 
data, and the red curves indicate the surface displacement response for 
the true model (the observed and true data deviate slightly due to 
measurement error ϵ). The blue dashed curves depict the P10 (lower), 
P50 (middle) and P90 (upper) posterior RS results using the surrogate 
model. We also perform high-fidelity simulations on the 601 accepted 
geomodels. The resulting P10, P50 and P90 curves are indicated by the 
solid black curves in Fig. 16. 

The results in Fig. 16 demonstrate uncertainty reduction in surface 
displacement predictions at the four observation locations. The prior 
uncertainty above location O3 is relatively small, however, and is only 
modestly reduced by the data assimilation procedure. We observe close 
correspondence between the P10, P50 and P90 predictions from the sur-
rogate model (blue dashed curves) and those from the high-fidelity 
simulations (solid black curves). This is an important consistency, and 
suggests that the surrogate model is indeed appropriate for the many 
function evaluations required by RS. 

Of particular interest in carbon storage operations are the pressure 
buildup at the top of the storage formation (caprock) and the location of 
the CO2 plume. We now assess the degree to which uncertainty in these 
quantities is reduced through assimilation of surface displacement data. 
We reiterate that no data other than the eight surface displacement 
measurements are used for history matching. Results for prior and 
posterior pressure and saturation data at locations O1–O4 are shown in 
Figs. 17 and 18. The surface displacement data are clearly informative in 
terms of pressure buildup, as we see substantial uncertainty reduction at 

Fig. 14. Comparison of pressure statistics at four observation locations over the full ensemble of 500 test cases. Red and black curves represent P10 (lower), P50 

(middle) and P90 (upper) results from the recurrent R-U-Net surrogate model and the high-fidelity simulator, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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all locations except O3 (consistent with Fig. 16). The surface displace-
ment data are not very informative for saturation, and we see little 
uncertainty reduction in Fig. 18. We do, however, observe that the 
posterior distributions for saturation at locations O2 and O3 have shifted 
towards the true result (red curve), and that the true response is 
captured within the posterior P10–P90 interval. Finally, consistent with 
our observations in Fig. 16, the surrogate and HFS P10, P50 and P90 
curves continue to agree closely in Figs. 17 and 18. 

Finally, in Fig. 19, we present surface displacement maps for prior 
and posterior models. The particular models displayed correspond to the 
P10, P50 and P90 responses for average vertical displacement, with the 
average computed from the surface displacements above the four 
observation locations, at 30 years. In the upper row, which corresponds 
to prior results, we observe significant discrepancies between the three 
maps. The three maps on the lower row, however, are much more 
similar to one another. This clearly illustrates the reduction in uncer-
tainty achieved by assimilating the surface displacement data. 

5. Concluding remarks 

In this study, we extended our 3D recurrent R-U-Net surrogate 
model, originally developed for two-phase subsurface flow, to treat 
systems involving coupled flow and geomechanics. The methodology 
was then applied for the simulation of CO2 storage operations. The 
recurrent R-U-Net involves the use of residual U-Nets and a convolu-
tional long-short term memory network. The 3D solution domain for the 
full-order problem includes a storage aquifer, a large surrounding re-
gion, overburden, and bedrock. The storage-aquifer geomodel is viewed 
as uncertain, with grid-block porosity and log-permeability character-
ized by multi-Gaussian random fields. An advantage of the surrogate 
model is that it can be trained to predict key quantities only in regions of 

interest. In this work the recurrent R-U-Net was trained to predict CO2 
saturation (i.e., plume location) and pressure in the storage aquifer, and 
vertical displacement at the Earth’s surface. 

The problem setup entailed injection of 4.54 Mta of supercritical CO2 
via four vertical injection wells. The overall model domain contained 
133,200 cells, with the storage aquifer defined by 19,200 cells. A total of 
2000 full-order models, each requiring 0.8 h of simulation time on a 32- 
core CPU, were used for training. Following training, predictions of key 
quantities for new geomodels were achieved in about 0.01 s. A high 
degree of accuracy between the full-order HFS and the surrogate model 
was demonstrated for a set of 500 new test cases. Close agreement was 
observed for CO2 saturation and pressure in the storage aquifer and for 
vertical displacement at the Earth’s surface. Results were presented both 
for individual geomodels and for ensemble statistics (P10, P50, P90 re-
sponses over the full set of test cases) at specific observation locations. 

We then applied the recurrent R-U-Net model for data assimilation. A 
rigorous rejection sampling algorithm was used, which required the 
evaluation of a large number of prior models. Specifically, 500,000 prior 
geomodels were generated using PCA, and flow predictions were pro-
vided using the surrogate model (this assessment would be intractable 
using HFS). A small number of surface displacement measurements, 
derived in this case from numerical simulation results on a synthetic 
‘true’ model, were used for data assimilation. Significant uncertainty 
reduction in predictions for both surface displacement and storage- 
aquifer pressure was observed. 

Future work in this area should address a number of topics. Larger 
and more complicated models, involving uncertainty in a wider range of 
properties including geomechanical parameters, should be considered. 
The use of other data assimilation algorithms, with a variety of data 
types, is also of interest. Because function evaluations with the surrogate 
model are so fast, methods and assessments (e.g., sensitivity of 

Fig. 15. Comparison of vertical displacement statistics at four observation locations over the full ensemble of 500 test cases. Red and black curves represent P10 

(lower), P50 (middle) and P90 (upper) results from the recurrent R-U-Net surrogate model and the high-fidelity simulator, respectively. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 16. History matching results for surface displacement at four observation locations. Gray regions represent the prior P10–P90 range, red points and red lines 
denote observed and true data, solid black and dashed blue curves denote the posterior P10 (lower), P50 (middle) and P90 (upper) predictions obtained using the high- 
fidelity simulator (black) and the surrogate (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 17. History matching results for pres-
sure at observation locations O1–O4. Note 
that only surface displacement data are 
used in the data assimilation. Gray regions 
represent the prior P10–P90 range, red lines 
denote true data, solid black and dashed 
blue curves denote the posterior P10 

(lower), P50 (middle) and P90 (upper) pre-
dictions obtained using the high-fidelity 
simulator (black) and the surrogate (blue). 
(For interpretation of the references to color 
in this figure legend, the reader is referred 
to the web version of this article.)   
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Fig. 18. History matching results for 
saturation at observation locations 
O1–O4. Note that only surface 
displacement data are used in the data 
assimilation. Gray regions represent the 
prior P10–P90 range, red lines denote 
true data, solid black and dashed blue 
curves denote the posterior P10 (lower), 
P50 (middle) and P90 (upper) pre-
dictions obtained using the high-fidelity 
simulator (black) and the surrogate 
(blue). (For interpretation of the refer-
ences to color in this figure legend, the 
reader is referred to the web version of 
this article.)   

Fig. 19. Prior (upper row) and posterior (lower row) P10, P50 and P90 surface displacement maps from the surrogate model. Percentiles are based on average 
displacement at the surface, with the averages over locations directly above O1–O4, at 30 years. 
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predictions to different data types or data precision) that would be 
impractical with full-order numerical models can now be considered. 
Finally, the use of the general recurrent R-U-Net framework for other 
coupled multi-physics problems, involving, e.g., some combination of 
flow, geomechanics, thermal effects and chemical reactions, should be 
explored. 
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