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Abstract

Numerical simulation is an essential tool for many applications involving sub-
surface flow and transport, yet often suffers from computational challenges
due to the multi-physics nature, highly non-linear governing equations, in-
herent parameter uncertainties, and the need for high spatial resolutions to
capture multi-scale heterogeneity. We developed CCSNet, a general-purpose
deep-learning modeling suite that can act as an alternative to conventional
numerical simulators for carbon capture and storage (CCS) problems where
CO2 is injected into saline aquifers in 2d-radial systems. CCSNet consists of
a sequence of deep learning models producing all the outputs that a numeri-
cal simulator typically provides, including saturation distributions, pressure
buildup, dry-out, fluid densities, mass balance, solubility trapping, and sweep
efficiency. The results are 103 to 104 times faster than conventional numerical
simulators. As an application of CCSNet illustrating the value of its high
computational efficiency, we developed rigorous estimation techniques for the
sweep efficiency and solubility trapping.

1. Introduction

Multiphase flow in porous media is important for many subsurface flow
and transport problems such as hydrocarbon production [1] and carbon cap-
ture and storage (CCS) [2]. Numerical simulation is the primary tool used
for predicting field-scale multiphase flow by solving spatially and temporally
discretized mass and energy balance equations [3, 4, 5]. However, numerical
simulation for multiphase flow problems is computationally expensive due to
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the multiphysics problem nature [6], highly nonlinear governing partial dif-
ferential equations (PDEs) [7], multiscale heterogeneity in the permeability
field [8], and need for high spatial resolution of the grids [9, 10]. The inherent
uncertainty in the subsurface geology necessitates probabilistic assessments
and history matching [11], which often require prohibitively large numbers of
simulation runs. To aid engineering decisions, ‘surrogate’ models with lower
fidelity but greater computational efficiency are often developed for specific
tasks [12, 13, 14, 15, 16].

Here we propose a deep learning approach for solving subsurface flow and
transport problems with the fidelity of a traditional simulator and the speed
of surrogate models or even faster. Unlike previous surrogate methods that
are often developed on a ‘task’ basis [12, 13, 14, 15, 16, 17, 18, 19, 20], we
demonstrate a deep learning tool, CCSNet, which can provide solutions to
an entire class of multiphase flow problems, namely, CO2 storage problems.
CCS is a climate change mitigation technology that requires injection of su-
percritical CO2 into saline aquifers for long term storage [21]. CCSNet can
solve for nearly all realistic scenarios that entail injecting CO2 into a 2d-radial
system through a vertical injection well [22]. In such systems, the complex
interplay between capillary, gravity, and viscous forces controls the migration
of CO2 [23, 24, 25, 10]. CO2 migrates horizontally away from the injection
well due to viscous forces while rising upwards due to to gravitational forces.
Subsurface geological heterogeneity results in variations of permeability and
capillary entry pressure [26, 8], which have a first-order effect on plume mi-
gration patterns, pressure buildup, trapping, and sweep efficiency [10]. Ac-
curately modeling of these phenomena requires numerical simulations with
high spatial and temporal resolutions [27, 9], making rigorous probabilistic
assessments, optimization, and history matching for CO2 storage especially
computationally intensive using conventional numerical simulators.

Deep learning has recently shown a growing potential for applications to
subsurface flow and transport problems [28, 18, 19, 17, 29, 20, 30, 31, 32, 33,
34]. Physics informed or physics constrained machine learning approaches
encode governing PDEs in the loss function and solve the problem through
automatic differentiation [28, 31, 32, 35]. To date, physics-informed machine
learning models have not been successful in providing accurate approxima-
tions for hyperbolic PDEs that govern most multiphase flow problems [29].
Supervised learning approaches use data generated by numerical simulators
to train deep learning models: these have shown encouraging results for spe-
cific uncertainty quantification or history matching tasks [19, 17, 36]. In fact,
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supervised learning models can represent any complicated relationship given
sufficient data and adequate training [37] and we develop CCSNet based on
this principle. We demonstrate in this paper that deep learning tools have
functionalities beyond merely used as task driven surrogate models. Instead,
CCSNet provides solutions to a whole class of problems – in essence, for
certain applications providing an alternative to conventional numerical sim-
ulation.

A major challenge for developing general-purpose tools for classes of prob-
lems is to design and create a training set that can fully represent the problem
domain. Here we train CCSNet with a data set containing highly resolved
and full-physics numerical simulation outputs that are representative of all
realistic scenarios for 2d-radial CO2 injection, including extensive ranges of
reservoir conditions, fluid properties, geological attributes, rock properties,
multiphase flow properties, and injection designs. Figure 1A shows the se-
quence of convolutional neural network (CNN) models in CCSNet that col-
laboratively provide predictions of salient outputs from conventional numer-
ical simulators, namely, CO2 gas saturation distribution, pressure buildups,
the molar fractions of CO2 and fluid densities for gas and liquid phases [38].
The full set of outputs allows us to evaluate how well the results satisfy
the governing conservation equations without explicitly representing them in
the loss function. CCSNet is nearly as accurate as numerical simulation for
all realistic cases in the problem domain while being 103 to 104 times more
computationally efficient. To demonstrate the value of CCSNet’s high com-
putational efficiency, we used stochastic sampling of the problem domains to
develop an estimation technique for sweep efficiency and solubility trapping,
two of the important considerations when selecting sites for CCS projects.

2. Methodology

This section describes the governing equations, training data set gener-
ation, model architecture, data configuration, and training strategy of CC-
SNet.

2.1. Governing equations

For the CO2 and water multiple-phase flow problem, the general form of
mass accumulation for component κ = CO2 or water is written as [38]:

∂Mκ

∂t
= −∇ · Fκ + qκ, (1)
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Figure 1: A. CCSNet’s inputs, prediction sequence, and outputs. The input section illus-
trates the four variable categories and specific variables in each categories. The prediction
sequence section shows the 6 convolutional neural network (CNN) models. The output
section shows the variables that CCSNet can produce. The arrows indicate the specific
input and output for each model in the prediction sequence. B. Comparisons of the nu-
merical simulation outputs, outputs predicted by CCSNet, and absolute/relative error at
three arbitrary time snapshots for each model. The figures lie on the (r, z) coordinate.
The r direction can extend to 100,000 m and the examples shown here are cropped.

For each component κ, the mass accumulation term Mκ is summed over
phases p,

Mκ = φ
∑
p

SpρpX
κ
p , (2)
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where φ is the porosity, Sp is the saturation of phase p, ρp is the density of
phase p, and Xκ

p is the mass fraction of component κ presents in phase p.
For each component κ, we also have the advective mass flux Fκ|adv obtained
by summing over phases p,

Fκ|adv =
∑
p

Xκ
pFp (3)

where each individual phase flux Fp is governed by Darcy’s law:

Fp = ρpup = −kkr,pρp
µp

(∇Pp − ρpg). (4)

Here up is the Darcy velocity of phase p, k is the absolute permeability, kr,p
is the relative permeability of phase p, µp is the viscosity of phase p, and g
is the gravitational acceleration. The fluid pressure of phase p

Pp = P + Pc (5)

is the sum of the reference phase (usually the gas phase) pressure P and the
capillary pressure Pc. To simplify the problem setting, our simulation does
not explicitly include molecular diffusion and hydrodynamic dispersion.

2.2. Training data set generation

We used the numerical simulator ECLIPSE (e300) to generate a large
data set that is representative of most potential scenarios for CO2 storage
in deep geological formations. ECLIPSE is a state-of-the-art full physics
numerical simulator that uses the finite difference system with upstream
weighting and the adaptive IMplicit method for simulation [39]. The modeled
volume is a radially symmetrical cylindrical volume that is 200m thick and
100,000m along the radius. The reservoir has no-flow boundaries on the top
and bottom; the large radius mimics an infinite acting boundary on the radial
direction. This geometry represents CO2 injection into a regional-scale saline
formation with a negligible dip, such as found in the Illinois Basin and parts
of the North Sea and Gulf Coast. The modeled volume is isothermal and
contains pure water prior to CO2 injection. The vertical injection well is
located at the center of the modeled volume, and the well radius is 0.1m.
The injection well has no cross-flow, which means CO2 can flow only from
the well to the reservoir. The well has a single and continuous perforation
and injects at a constant rate.
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We used 96 uniform grid cells in the vertical direction and 200 gradually
coarsened grid cells in the radial direction to represent the reservoir. This grid
design is sufficiently refined to resolve the plumes in heterogeneous reservoirs
while it remains computationally tractable for the purpose of training the
deep learning models [10]. The numerical simulation runs for 30 years with
24 gradually coarsening time snapshots. Details of the temporal and spatial
grid are discussed in Appendix A.

For each simulation case, we sample the inputs from the following four
main categories.

2.2.1. Reservoir conditions

This category consists of formation thickness, initial pressure, and tem-
perature, which are the most basic types of information available for any
geological formation.

Existing machine learning-based methods for predicting subsurface flow
problems usually suffer from fixed data dimensions, which significantly limits
the models’ applicability. To account for the variable formation thicknesses,
we assign extremely low permeability (10−7mD) to layers in excess of the
actual reservoir thickness. Using this method, CCSNet can handle formation
thicknesses from 15m to 200m, which covers most of the known CO2 storage
projects operating today [40]. In future revisions, thicker reservoirs can also
be included. The initial pressure and temperature in a formation depend
on the depth and geothermal gradient. Formations that are too shallow
are unsuitable for injection because CO2 might not be in a super-critical
state under reservoir condition; for formations that are too deep, drilling
costs are prohibitively high for CO2 storage [41]. Therefore, to generate
realistic combinations of initial pressure and temperature, we first randomly
sample the reservoir initial pressure from 100 to 300 bar, which corresponds
approximately to formation depth from 1,000 to 3,000m. Subsequently, for
the reservoir temperature, we sampled the geothermal gradient from 18 to
50 C◦/km and created a wide range of temperature values from 35 to 170◦C.

2.2.2. Geological model

The geological model describes the spatial distribution of permeability
values. We train CCSNet with a data set containing various types of perme-
ability maps. The permeability maps representing different depositional envi-
ronments include a broad range of permeability values (10−3 mD to 102 D), a
wide variety of horizontal and vertical correlations, and various permeability
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distributions, such as Gaussian, non-Gaussian, bi-modal, multi-modal distri-
bution, and uniform distributions (statistical characteristics summarized in
Appendix B).

2.2.3. Rock properties

Commonly used rock property characteristic curves for CO2 storage in-
clude relative permeability curves and capillary pressure curves. Both char-
acteristic curves substantially impact the rate and direction of plume mi-
gration and are incorporated into CCSNet. To account for different relative
permeability and capillary pressure curves, we sample the irreducible water
saturation and van Genuchten function scaling factor according to references
of rock types that can be used for CO2 storage [42, 43]. The irreducible water
saturation controls the relative permeability and capillary pressure charac-
teristic curves. We used Corey’s curves to model relative permeability curves
as a function of water phase saturation (Sw):

kr,w = S∗w
nw ,

kr,CO2 = kr,CO2(Swi)(1− S∗w)2[1− (S∗w)nCO2 ],
(6)

where kr,w is the relative permeability of the water phase, kr,CO2 is the relative
permeability of the CO2 phase, Swi is irreducible water saturation, coefficient
nw = 6, coefficient nCO2 = 5, coefficient kr,CO2(Swi) = 0.95, and S∗l =
(Sl − Swi)/(1− Swi). To create different sets of relative permeability curves,
we sampled Swi from 0.1 to 0.3 in the training set.

The capillary pressure curves are modeled by the van Geneuchten func-
tion:

Pc = Pe[(S
∗)−1/λ − 1]1−λ, (7)

where Pc represents capillary pressure, Pe represents capillary entry pressure,
and S∗ = (Sw − Swi)/(Sls − Slr). Note that here we used an approximation
of Slr = 0.999 to represent the capillary entry pressure to avoid numerical
errors in ECLIPSE. In the data set, we randomly sampled the scaling factor
λ from 0.3 to 0.7 to create capillary pressure curves with different slopes.
The capillary entry pressure is scaled according to the permeability in each
grid cell by Leverett J-function:

Pe =

√
kref/φref√
k/φ

Pref , (8)

where kref = 3.95 × 10−15 m2, φref = 0.185, and Pref = 7, 500Pa. For the
van Genuchten curve, the Swi is the same as in Corey’s curve.
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2.2.4. Injection design

We created various combinations of injection rates, injection depths, and
perforation thicknesses. In the training set, the maximum injection rate is 2
MT/year and the minimum injection rate is 0.02 MT/year. In addition to
the injection rates, injection locations and perforation thicknesses also signif-
icantly influence the plume migration, especially in heterogeneous reservoirs.
We created a wide range of injection strategies with the injection perfora-
tion interval thicknesses range from 15m to 200m; the top of the perforated
interval is placed randomly within the depth interval of the injection well.

2.3. Model architectures

We designed a temporal-3d CNN model architecture for predicting the
dynamic changes of CO2 gas saturation, pressure buildup, molar fractions,
and densities in each phases. The temporal-3d CNN consists of 3d convo-
lutional kernels [44] that can extract information in both the temporal and
spatial dimensions, which are adopted from state-of-the-art video classifica-
tion and human action recognition models [45, 46]. Notably, we trained the
temporal-3d CNN on data that has both non-uniform spatial and temporal
dimension. Our results show that the temporal-3d CNN has excellent per-
formance in non-uniform spatial-temporal systems, which significantly im-
proved the models’ applicability. For the input/output regression mapping,
we used an encoder-decoder structure that contains three major components:
encoder, processor, and decoder (Figure 2).

The encoder maps the input 3d-volume to the input feature embedding.
The processor learns the relationship between the input’s embedding and
the output’s embedding using multiple 3d-ResConv blocks that we designed
based on the well-known 2d-residual learning block [47]. The decoder projects
the embedding of the output to the temporal-3d output space that represents
the dynamic change of saturation, pressure, and dissolved phase molar frac-
tion. Our work shows that the temporal-3d encoder-decoder architecture has
performance superior to that of the U-Net based architectures [48] because,
we hypothesize, the input and output exist in different spatial and temporal
spaces.

The schematic in Figure 2 shows the network depth, and sizes of the Sat-
uration CNN. For pressure, molar fractions, and densities in each phases, the
depths and the sizes of the temporal-3d model architecture were optimized
to provide accurate predictions each specific output. Parameters for each
model are summarized in Appendix D, Appendix E, and Appendix F.
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Figure 2: Model schematics of the Saturation CNN. The Encode operation consists of
Conv3D/BN/ReLu; the ResConv operation consists of Conv3D/BN/Conv3D/BN/ReLu/Add;
the Decode operation consists of UnSampling/Padding/Conv3D/BN/Relu . The last di-
mension in the bracket denotes the number of channels.

2.4. Data configuration and augmentation

2.4.1. Outputs

Numerical simulation outputs at any arbitrary time step can be repre-
sented as 2d matrices in the dimension of 96 × 200 (r, z). The 2d matrices
are stacked along the temporal dimension to construct the temporal-3d vol-
ume with the dimension of 96 × 200 × 24 (r, z, t). The output data of gas
saturation distribution, pressure buildup, molar fraction of CO2 in the liq-
uid phase (xCO2) and gas phase (yCO2), and densities in each phase are all
configured in this manner.

To improve the training efficiency, we applied min-max normalization to
the output values of pressure buildup and xCO2. We also applied a data
augmentation technique in addition the min-max normalization for the out-
puts of yCO2 and densities in each phase. For these outputs, the magnitude
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of the output values within the plume have a large difference comparing to
the values outside the plume. For example, gas densities within a plume
has magnitude of few hundreds (kg/m3) with a small variation; gas density
outside of a plume is always zero. Therefore, simply applying a min-max
normalization to these outputs would suppress the details within the plume
area. We used the data augmentation technique that casts the values outside
the plume to be a constant slightly smaller than the minimum value within
the plume. This technique allows us to maintained the details within the
plume and produces highly accurate prediction for yCO2 and densities in
each phase.

2.4.2. Inputs

The inputs to the CNN models are designed to have the identical shape as
the outputs. The high dimensional volume (96×200×24) provides room for
incorporating all of the aforementioned input variables: reservoir conditions,
geological attributes, rock properties and injection design. For each input,
the permeability map and reservoir thickness are represented in a 96 × 200
matrix. The injection perforation location is represented by a binary matrix
where only grid cells next to the perforation interval are marked by one.
The variable of initial pressure, temperature, injection rate, irreducible wa-
ter saturation, and van Genuchten scaling factor are scalar values which we
broadcast into matrices in the dimension of 96 × 200. These matrices are
concatenated to construct the input volume in dimension of 96 × 200 × 24.
Notice that these input variables only populate 7 of the 24 slices available
in the input volume. The idle slices are populated with permeability maps
here and can be converted easily to directional permeability or porosity in
the future.

The Saturation and Pressure CNNs both use this input volume as their
training input. For the xCO2 and yCO2 CNNs, the prediction also requires
the predicted gas saturation and pressure buildup in addition to the input
volume. Therefore, we concatenated the gas saturation volumes, pressure
buildup volumes, and the original input volumes to create a 4d training
input with the dimension of 96 × 200 × 24 × 3. Similarly, for training the
CNNs that predict the densities in each phase, we constructed a similar 4d
input that consists of the formation temperature, pressure, and the molar
fraction in the specific phase.

The training/validation data split is 10/1 with 19,000 training samples
and 1,900 validation samples.
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2.5. Training strategy

The loss function that we used is the Mean Square Error (MSE) loss:

LMSE =
1

N

N∑
i=1

||yi − ŷi||22,

where N is the number of training samples in a batch, y is the true output
in the data set, ŷ is the output predicted by the temporal-3d CNN model,
described as ŷi = f(xi, θ), where θ is the model’s learnable parameters and
xi is the input. During training, θ is updated based on the gradient to the
loss function with respect to the θ (also referred to as back propagation in
machine learning). We used the Adam optimizer [49] for the minimization
of the loss function. The Glorot normal initializer [50] (also referred to as
the Xavier normal initializer) was used to initialize the convolutional layers’
kernels in the CNNs. We applied L2 weight regularizers on the convolutional
layers with a hyperparameter of 0.001 to reduce overfitting. The learning
rate was initialized to be 10−4 and manually reduced to 10−7 throughout the
training process. Our previous experiments show that the training efficiency
of the CNNs is nearly insensitive to the choice of batch size [30]. The models
were trained on NVIDIA v100 GPUs, and the training duration varied from
a few days to a week.

3. Results

3.1. CO2 gas saturation distribution

Using the temporal-3d CNN model illustrated in Figure 2, we trained the
Saturation CNN to predict dynamic CO2 gas saturation distributions as a
function of space and time. Given information about the reservoir conditions,
geological attributes, rock properties and injection patterns, the Saturation
CNN generates predictions of dynamic CO2 gas saturation distributions in
∼0.05s, which is more than 104 times faster than conventional numerical
simulators (details on computing specifications in discussed in Section 4.1).

Figure 1B shows an example of the Saturation CNN’s prediction at several
time snapshots in comparison with the numerically simulated output. This
example demonstrates the multi-physics nature of the problem: the effects
of viscous forces due to injection; the effects of gravity that lead to buoyancy
induced flows; and spatially varying rock properties that locally counteract
buoyancy. A dry-out zone also forms near the injection perforation, where
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Table 1: Accuracy summary for model/output. All values were evaluated base on 1,000
randomly chosen samples. R2 refers to the average scores in the training or validation
set, µ refers to a mean, σ refers to a standard deviation, PAE refers to absolute errors
within the plume; RAE refers to relative absolute errors for the whole field; PRE refers
to relative errors within the plume.

Model / Output Metric Training Validation Unit
Saturation CNN R2 0.999 0.998 -

µPAE 0.008 0.009 m3/m3

σPAE 0.013 0.014 m3/m3

Pressure CNN R2 0.997 0.996 -
µRAE 2.3 2.5 %
σRAE 1.1 1.2 %

xCO2 CNN R2 0.998 0.998 -
µPAE 1.58×10−4 1.69×10−4 mol/mol
σPAE 6.60×10−5 8.31×10−5 mol/mol

yCO2 CNN R2 1.000 1.000 -
µPAE 6.80×10−4 8.09×10−4 mol/mol
σPAE 3.42×10−4 4.41×10−4 mol/mol

Liquid phase R2 1.000 1.000 -
density CNN µPRE 0.05 0.06 %

σPRE 0.06 0.06 %
Gas phase R2 1.000 1.000 -
density CNN µPRE 0.01 -0.01 %

σPRE 0.14 0.16 %
Mass balance R2

liq 0.999 0.999 -

µliq 0.06 0.07 %
σliq 0.68 1.07 %
R2

gas 1.000 1.000 -
µgas 0.07 0.07 %
σgas 0.76 0.93 %
R2

total 1.000 1.000 -
µtotal -0.09 0.08 %
σtotal 0.74 0.85 %

the liquid-phase water vaporizes entirely into the gas phase. Although the
dry-out is challenging for most numerical simulators due to the sharp gas
saturation gradient, the Saturation CNN accurately predicts this in addition
to the saturation variations caused by geological heterogeneity.

Based on a 1,000 randomly chosen examples, we show that the Satura-
tion CNN is highly accurate (Table 1, Figure 3A). Similarly high R2 values
in the training and validation set demonstrate that the model has success-
fully learned the underlying relationship between the input parameters and
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Figure 3: A. Histograms of Saturation CNN’s R2 scores in the training and the validation
set with the mean and standard deviation. On the validation set histogram, the red bars
denote the R2 score of the 6 examples in B and C. The alphabetical order corresponds
to cases with R2 scores at the 99, 95, 70, 30, 5, and 1 percentile. B. Gas saturation
predicted by CCSNet vs. numerical simulation on each grid for the 6 examples. The
colors of the points represent the injection duration. C. The permeability map, numerical
simulation output, CCSNet predicted output, and absolute error for the 6 examples at
30 years. Inputs variables are summarized under each permeability map. The horizontal
axes indicate the radial direction and the plume can extend out of the plot area. The
mean absolute error within the plume (µPAE) is shown for each example. The reservoir
thicknesses are marked on the vertical axes.
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the corresponding saturation plume behavior instead of merely memorizing
the training data. We use six examples in Figure 3B to demonstrate the
prediction performance at different R2 scores (ranked from high to low), in
which we show that the Saturation CNN performs equally well throughout
the prediction period and over the entire range of saturation values. Cases
with smoother permeability maps are matched almost perfectly. Even for the
most challenging example that is in the lowest 5% of the validation set, the
predicted saturation distribution is in close agreement to the simulated out-
put. The accuracy statistics provided in Table 1 indicate that the Saturation
CNN provides predictions that are sufficiently accurate for predicting plume
migration, sweep efficiency assessment, plume footprint prediction, and risk
analysis.

3.2. Pressure buildup

We trained another temporal-3d CNN model, Pressure CNN (model pa-
rameters summarized in Appendix E), to predict the pressure buildup due
to CO2 injection. The Pressure CNN can be used independently from the
Saturation CNN. Pressure buildup predictions take ∼0.04s. Figure 1B shows
an example of the Pressure CNN’s output at various times, in which the CO2

is injected in the lower half of the reservoir, creating a zone of high pressure
buildup near the injection perforation.

Pressure buildups vary widely in the the reservoir and between cases,
ranging from almost 400 bars near the injection well in over pressured reser-
voirs, to 0 bars near the reservoir boundary in highly permeable reservoirs.
The Pressure CNN successfully accounts for the distinctly different pres-
sure behaviors in different reservoirs and produces highly accurate predic-
tions (Table 1, Figure 4A). The six examples in Figure 4C and D illustrate
the excellent performance in predicting dynamic propagation of the pressure
buildup in the reservoir throughout the injection period. Unlike saturation
predictions where permeability heterogeneity dominants the performance,
the Pressure CNN’s performance is correlated to the magnitude of pressure
buildups, and poorest performance is for cases with the smallest pressure
buildups (Figure 4B).

3.3. Mass balance analysis

Ability to accurately track the total mass balance and distribution of
mass between phases is a critical measure of model performance and allows
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Figure 4: A. Histogram of Pressure CNN’s R2 scores in the validation set with the mean
and standard deviation. The red bars mark the score of the 6 examples in B, C and D.
The alphabetical order corresponds to cases with R2 scores at the 99, 95, 70, 30, 5, and
1 percentile. B. Scatter plot of the R2 scores vs. average pressure buildup. C. Pressure
buildup predicted by CCSNet vs. numeral simulation on each grid for the 6 examples. The
colors of the points represent the injection duration. D. The permeability map, numerical
simulation output, CCSNet output, and relative error for the 6 examples at 30 years.
Inputs for injection rate, temperature, initial pressure, irreducible water saturation, and
capillary pressure scaling factor are summarized under the permeability map. The mean
absolute relative error (µRAE) is shown for each case. The horizontal axes indicate the
radial direction and the reservoir thicknesses, are marked on the vertical axes.
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us to evaluate how well the deep learning outputs satisfy the governing con-
servation laws without explicitly representing the PDEs in the loss function.
CCSNet uses six deep learning models to predict all the components needed
to perform a mass balance (Figure 1A). The following equation describes the
CO2 mass balance in the reservoir at a given time step:

M =
∑
i,n

Vn(φSρX)i,n (9)

where M is the total CO2 mass, i denotes the phase (gas or liquid), n denotes
the spatial grid, V is cell volume, φ is porosity, S is saturation, ρ is density,
and X is the mass fraction of CO2.

CCSNet generates each variable required in the mass balance analysis
for the injected CO2. The Saturation CNN provides Si,n. Since the rock is
compressible, the Pressure CNN is used together with the compressibility of
the rock to predict φi,n. Additionally, we developed and trained a model for
predicting molar fractions of CO2 in the liquid (xCO2 CNN), a model for
predicting molar fractions of CO2 in the gas phase (yCO2 CNN), as well as
two models for predicting densities of the liquid and gas phases. Examples
of each model’s output are shown in Figure 1B. Refer to Appendix C for
details on the mass balance calculations.

3.3.1. xCO2 CNN

Prediction of the molar fraction of dissolved CO2 in the liquid phase
(xCO2) requires information about the gas saturation distribution, temper-
ature, and pressure. CO2 dissolves into the reservoir fluid wherever separate
phase CO2 is present. For the two-component system studied here, pressure
and temperature control the solubility of CO2. A small amount of dissolved
CO2 migrates in advance of the plume. No dissolved CO2 appears in the
dry-out zone near the injection well because the entire liquid phase is vapor-
ized into the gas phase and transported away from the dry-out zone. Taking
these factors into account, we use predicted outputs from the Pressure CNN
and Saturation CNN in addition to the original input to train the xCO2

CNN. Our experiments show that using this concatenated input significantly
reduced over-fitting comparing to training with the original input.

The trained xCO2 CNN performs very well (Table 1). Three examples
in Figure 5B and C demonstrate the performance of the xCO2 CNN. The
prediction of xCO2 CNN is more accurate in relatively homogeneous reser-
voirs where the dissolved phase xCO2 stays close to the saturation plume
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Figure 5: A. Histograms of xCO2 CNN’s R2 scores in the training and the validation set
with mean and standard deviation. The red bars mark the score of the 6 examples in
B and C. The alphabetical order corresponds to cases with R2 scores at the 95, 50, and
5 percentile. B. Histogram comparisons between the numerical simulation’s output and
CCSNet’s output within the plume for 3 examples. C. The permeability map, numerical
simulation output, CCSNet output, and absolute error for 3 examples at 30 year. Inputs
for injection rate, temperature, initial pressure, irreducible water saturation, and capillary
pressure scaling factor are summarized under the permeability map. The mean absolute
error within the plume (µPAE) is shown for each example. The horizontal axes indicate
the radial direction, and the reservoir thicknesses are marked on the vertical axis.

front (Figure 5C.a). Heterogeneous cases such as Figure 5C.c are more chal-
lenging because dissolved CO2 migrates in advance of the plume at various
velocities.

3.3.2. yCO2 CNN

The molar fraction of CO2 in the gas phase depends on temperature and
pressure. A small fraction of water vaporizes into the gas phase except in the
dry-out zone, where the gas-phase contains nearly purely CO2. We trained
the yCO2 CNN to predict the molar fraction of CO2 in the gas phase given
the temperature, gas saturation predicted by Saturation CNN, and pressure
predicted by Pressure CNN (model parameters summarized in Appendix
F). The yCO2 CNN provides excellent predictions for both the training and
validation set (Table 1).
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3.3.3. Fluid density CNNs

The fluid phase densities in the gas or liquid phase depends on the tem-
perature, pressure, and molar fraction of CO2 in that phase. Therefore, we
trained two auxiliary CNNs to generate density predictions given tempera-
ture, pressure predicted by the Pressure CNN, and molar fraction predicted
by the xCO2 or yCO2 CNN (model architecture in Appendix F). The trained
fluid phase density CNNs are highly accurate (Table 1).

3.3.4. Error analysis

CCSNet generates accurate mass balances over the entire injection period
(Table 1 and Figure 6). The largest errors occur during the first several days
of injection. We hypothesize this is caused by a larger fraction of the CO2

being in the liquid phase early in the injection process. The amount of CO2

dissolved in the liquid phase is highly influenced by the artifacts of numerical
dispersion at the leading edge of the plume. Therefore, at the beginning of
the CO2 injection, the training data are less systematic and challenging to
learn. As injection goes on, a larger fraction of the CO2 mass is in the gas
phase, therefore the mass predictions becomes more accurate.

Figure 6: Mass balance error for the total, liquid phase, and gas phase CO2 mass. The
x-axes indicate the days of injection and the y-axes indicate percentage of the error. The
black dotted dash lines are references for ±1%. The light and dark shaded area are the
68% and 95% confidence intervals of the error.

Compared to physics informed machine learning approaches, supervised
learning methods are criticized for the ‘lack of physics’ because the loss func-
tion does not explicitly describe the conservation laws and governing equa-
tions. However, our accurate mass balances together with the accurate dis-
tribution of CO2 in both phases indicate that the supervised learning-based
prediction sequence can satisfy the conservation laws and governing equations
given sufficient data and training.
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4. Discussion

4.1. Comparative computational efficiency

The average numerical simulation run time for 1,000 random cases using
ECLIPSE (e300) is 10 minutes on an Intel® Xeon® Processor E5-2670 CPU.
The numerical simulation run time for each simulation varies from 4 to over
100 minutes. Each simulation case utilizes a fully dedicated CPU, and the
run time depends on the difficulty of the case.

To compare the computational efficiency, we used a NVIDIA v100 graph-
ical processing units (GPUs) for CCSNet model inference. CCSNet’s predic-
tion times have very small variances (∼1%) compared to the conventional
numerical simulator, and we computed computational efficiency based on
the average of 1,000 random samples. The prediction time for the Saturation
CNN and Pressure CNN are ∼0.05s and ∼0.04s, respectively. Given the gas
saturation and pressure buildup, the models for predicting the molar fraction
of CO2 in the liquid and gas phases each take ∼0.03s. The gas and liquid
phase fluid densities also require ∼0.03s. Therefore, running the entire deep
learning model sequence requires ∼0.22s to provide the full set of outputs
that a numerical simulator can provide. The comparative speed-up between
using CCSNet and ECLIPSE varies from 103 to 104 orders of magnitude de-
pending on the information required by the particular analysis. For example,
when predicting the sweep efficiency, we can run the Saturation CNN model
by itself, which requires only ∼0.05s. Calculating the solubility trapping re-
quires outputs from the Saturation, Pressure, xCO2, and liquid phase density
CNNs, which adds up to ∼0.15s. Average speed ups for relevant analyses
are summarized in Table 2.

Table 2: Comparative computational efficiency of CCSNet. We used a NVIDIA v100
GPU for the model inference and the prediction time was calculated by taking the average
of 1,000 random runs. The average ECLIPSE simulation run time in the training set
(10 mins) was used for the comparison, where each simulation was carried out using an
dedicated Intel® Xeon® Processor E5-2670 CPU.

Variable Prediction time Average speed up
Gas saturation distribution 0.05s 1.2×104

Pressure buildup 0.04s 1.5×104

Sweep efficiency 0.05s 1.2×104

Solubility trapping 0.15s 4.0×104

Mass balance 0.22s 2.7×103
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4.2. Applications with fast prediction

Taking the advantage of the fast prediction speed of CCSNet, we develop
a method for estimating sweep efficiency and solubility trapping using in-
formation that is often available for screening or comparing different CO2

storage sites. In both cases, we stochastically sample the problem domains
to develop a large ‘data set’ composed of 5,000 CCSNet runs to establish
a relationship between the reservoir/operational properties and the sweep
efficiency or solubility trapping. We sampled the homogeneous permeabil-
ity from 1000mD to 5mD with a log-uniform distribution and the following
variables with an uniform distribution: injection rate from 0.2 to 2 MT/yr,
initial pressure from 80 to 160 bar, geothermal gradient from 22 to 28 ◦C/km,
Swi from 0.1 to 0.3, λ from 0.3 to 0.7, reservoir thickness from 15 to 200m,
and perforation length from 15 m to the reservoir thickness. The sampled
data set contains only those cases where the maximum pressure buildup is
limited to 75% of the initial reservoir pressure. Here we use homogeneous
reservoir characteristics since this is usually the only information available
during site screening (e.g. in advance of detailed site-specific studies). By
using CCSNet, the computational time for exhaustively sampling the domain
is reduced from ∼35 days to ∼4 mins for sweep efficiency and ∼12 mins for
solubility trapping.

4.2.1. Sweep efficiency estimation

Sweep efficiency is a measure of how efficiently the storage space in a
reservoir is used; the higher the sweep efficiency the better because higher
sweep efficiency results in a smaller footprint of the CO2 plume [51]. The
footprint is the areal extent of the plume defined as πr2

max, where rmax refers
to the largest distance away from the well that CO2 has migrated. Sweep
efficiency (Esweep) is calculated as:

Esweep =
Vgas

Vrfootprint

=

∑
n VnφnSn∑

n∈footprint Vnφn
, (10)

where V is the cell volume, φ is the porosity, S is the gas saturation, n de-
notes the spatial grid cell, and n ∈ footprint denotes all grid cells within
the the plume footprint. Using the gas saturation predicted by CCSNet, we
find that Esweep depends strongly on reservoir characteristics, ranges from
as low as 0.01 to 0.2 over the sampled problem domain (Figure 7A). We
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use CCSNet-generated Esweep values as inputs into a non-linear multivari-
ate regression algorithm (details in Appendix G) to develop an empirical
relationship between Esweep and reservoir/operational parameters.

Esweep = exp(0.05955− 0.5258 lnNb − 1.390× 10−3Nb

+0.2503 ln(
rinj
rref

)− 1.162Swi + ε), Nb ∈ (10, 450)
(11)

Figure 7: A. Comparisons of sweep efficiency and solubility trapping coefficient calculated
using the empirical Equation 11 and 12 verses using CCSNet in the validation set. B.
Coefficient sensitivity of each term in Equation 11 and 12. P5 and P95 represent the
lowest 5th percentile and highest 95th percentile of the value for the term in the validation
set.

Here Nb is the Bond number defined as ∆ρgbres/Pcap where bres is the
reservoir thickness and Pcap is the capillary entry pressure, Swi is the irre-
ducible water saturation, r is injection rate, and ε is the error term (reference
values and details on each term summarized in Table G.7). As shown in Fig-
ure 7A, Eq. 11 is a excellent predictor of sweep efficiency over the range of
Bond numbers from 10 to 450, as long as the injection rate is limited to
comply with the 75% overpressure constraint. Previous studies have demon-
strated that sweep efficiency and trapping are influenced by gravity number
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and depositional environment [26, 52]. Here we show that for homogeneous
reservoirs, the Bond number (Nb) has the largest influence on Esweep; reser-
voirs with lower Bond numbers have higher Esweep (Figure 7B). Esweep also
increases with higher injection rates and lower Swi values. Surprisingly, for
the homogeneous reservoirs studied here, factors such as injection depth or
injection interval had no significant influence on Esweep. This would be ex-
pected to change for heterogeneous reservoirs.

4.2.2. Solubility trapping estimation

Solubility trapping occurs when CO2 dissolves into the formation water
and is beneficial for reducing the risk of CO2 leakage [53, 54, 55]. Using a
similar stochastic approach as described above, we developed an empirical
expression for estimating solubility trapping (Cdiss), where Cdiss is the mass
fraction of the injected CO2 dissolved in the formation water:

Cdiss =0.0762 + 0.1804Swi − 0.0030 lnNb + 0.2667
kref
k

− 0.0149λ− 0.0964
P

Pref
+ 0.0177

T

Tref
+ ε

(12)

where k is permeability, λ is the coefficient in van Genechuten capillary func-
tion, P is the initial pressure, and T is the temperature. Reference values
and the error term are summarized in G.7. Solubility trapping is strongly
influenced by a number of reservoir properties, with values ranging from 0.05
to nearly 0.15 (Figure 7A). In addition to the Bond number and Swi, Cdiss is
also influenced by the formation permeability, initial pressure, temperature,
and the coefficient in the capillary pressure function. Solubility trapping
increases with lower permeability, higher reservoir temperature, lower pres-
sure, and lower Bond number (Figure 7B). This result is counterintuitive,
because the solubility of CO2 in water increases with higher pressure and
lower temperature. This analysis suggests Cdiss is more strongly controlled
by the density of the CO2, which like Cdiss, decreases with higher tempera-
ture and lower pressure. The lower the density of CO2, the greater the plume
volume, hence more contact area with the formation water and higher Cdiss.

Note that the solubility trapping described here occurs during the injec-
tion phase of the CO2 storage project. After injection stops, CO2 will con-
tinue to dissolve as the result of convective mixing [56] and spreading [57],
thus our estimates should be viewed as a lower bound. Additionally, we con-
sidered reservoirs with pure water; reservoirs with higher concentrations of
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dissolved salts have lower solubility [58] and consequently smaller amounts
of solubility trapping.

5. Conclusion and future work

We show that deep learning models such as CCSNet can provide an alter-
native to computationally intensive numerical simulators for routine tasks,
such as predicting the injection performance of CO2 storage projects. Im-
portant parameters such as the maximum extent of the CO2 plume, satura-
tion distributions, pressure buildup at the injection well and throughout the
reservoir, sweep efficiency, and solubility trapping can be calculated accu-
rately with high computational efficiency. While CCSNet includes many of
the important parameters needed to realistically simulate the injection phase
of a CO2 storage projects, it is currently limited to systems well-represented
by 2d-radial geometry and isotropic rock properties, and does not yet in-
clude post-injection processes processes such as residual gas trapping [59, 60]
or mineral trapping [61, 62]. Nevertheless, the ability to train the model to
perform the current tasks with such a high degree of accuracy, covering such
a large domain of input parameters bodes well for increasing the capabilities
of these models to include other features.

CCSNet has the flexibility to include additional input parameters and
features when needed. As discussed in data configuration, the input vol-
umes contain idle slices that can be used for other parameters. For example,
the model currently uses isotropic permeability values. We can easily add
anisotropy and porosity to the model by converting some slices into direc-
tional permeability and porosity. Similarly, relative permeability curves could
be modified to include residual gas trapping [59].

The benefits of the high computational efficiency of CCSNet are evident
from the new methods for estimating Esweep and Cdiss presented here. It is
now possible to quickly provide reservoir-specific estimates of these parame-
ters for screening prospective storage sites using data sets that are publicly
available [63, 64, 65]. CCSNet can also be used once more site-specific data
on geological heterogeneity is available to optimize injection depths and rates,
make proabalistic predictions of plume footprint and pressure buildup, and
for inverse modeling of monitoring data; all tasks required to support regu-
latory permit applications and compliance.
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Web application

We developed a publicly accessible web application that hosts CCSNet.
Users’ can customize input variable combinations, including uploading their
own permeability maps. The web application provides both independent and
collaborative prediction to the models described above and produces outputs
such as gas saturation, pressure buildup, solubility trapping, and sweep effi-
ciency. Refer to https://youtu.be/5bIlfjyo6Jk for a video demonstration
of this web application. The web application will be released to public upon
the publication of this manuscript.

Code and data availability

The python code for CCSNet modeling suite and the data set used in
training will be released upon the publication of this manuscript.
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Appendix A. Grid resolution

The vertical grid dimension is dz = 200m/96 = 2.0833m. The radial grid
dimension is dr = 3.6m× ai−1, where a = 1.035012, i ∈ [1, ..., 200]. We used
24 time snapshots with gradually coarsening resolution to represent the total
30-year period where the time interval varies from days to years. Time step
intervals dt = 1.421245i−1 days, where i ∈ [1, ..., 24]. At early time steps, the
CO2 plume is located near the injection well where the spatial grid has high
resolution. Capturing the variability between each time step requires high
temporal resolution. Towards the end of the injection, because the plume
migrates away from the injection well where the spatial grids are coarser, the
coarse time resolutions are adequate. The temporal grid design also satisfies
needs for operation that often requires finer time resolution monitoring at
the beginning of injection.
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Appendix B. Statistical characteristics of permeability maps

Table B.3: The permeability maps are generated using Stanford Geostatistical Modeling
Software (SGeMS) [66]. SGeMS is an open-source computer package for geostatistical
modeling according to user defined spatial variables. Here we defined the medium appear-
ance, spatial correlation, mean, and contrast ratio (khigh/klow) in each map to create a
large variety of permeability maps. The permeability value for an individual cell can range
from 10−3 mD to 102 D.

Medium Parameter Mean Std Max Min Unit
Gaussian Field average 30.8 58.3 1053 0.3 mD

Vertical correlation 7.3 3.6 12.5 2.1 m
Horizontal correlation 2190 1432 6250 208 m
Contrast ratio 4.01× 104 2.19× 105 3.00× 106 1.01 -

von Karman [67] Field average 39.9 54.4 867.9 1.8 mD
Vertical correlation 7.2 3.5 12.5 2.1 m
Horizontal correlation 2.15× 104 1.40× 104 6.23× 104 208 m
Contrast ratio 2.66× 104 1.54× 105 2.12× 106 1.00 -

Discontinuous Field average 80.8 260.2 5281 2.0 mD
Vertical correlation 7.2 3.6 12.5 2.1 m
Horizontal correlation 2176 1429 6250 208 m
Contrast ratio 2.17× 104 1.51× 105 2.68× 106 1.01 -

Layered Field average 258.6 140.8 1022 5.4 mD
Number of materials 10 5 20 2 -
Contrast ratio 190.7 582.0 1.38× 104 1.00 -

Homogeneous Field permeability 327.7 478.1 1216 4.0 mD
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Appendix C. Mass balance analysis

The discretized form of the mass accumulation term (Equation 2) at a
given time step is written as:

M =
∑
i,n

Vn(φSρX)i,n, (C.1)

where and n denotes the spatial grid and i denotes phase gas or liquid.
CCSNet uses six models to collaboratively provide predictions to all the
components. The Saturation CNN predicts the gas saturation which provides
Si,n; the fluid density CNNs provide ρi,n; the xCO2 CNN and the yCO2 CNN
provide the molar fraction of CO2 in each phase, which are thus used for
calculating Xi,n. Since the reservoir rock is compressible, pore volume φn is
a function of the pressure in each cell:

Ct =
dφn
dPn

1

φn
, (C.2)

where Ct = 5× 10−4 bar−1 represents the rock compressibility. The Pressure
CNN predicts the pressure in each grid cell and the pore volume φn is adjusted
as φn(Pn) = φn(Pn,ref )(1 + X + X2/2), where X = Ct(Pn − Pn,ref ) and
Pn,ref = 1.0132 bar.

Note that a neural network rarely predicts true zeros because the outputs
are calculated empirically. Instead, zeros are represented by tiny numbers
such as 10−6. In the mass balance calculation, these tiny values in the predic-
tions are amplified at grid cells that are far away from the injection well due
to the large grid cell volume. Therefore, we applied cutoffs to the prediction
of the Saturation and xCO2 CNNs by casting gas saturation smaller than
1e-2 and xCO2 smaller than 8e-4 to be zeros.
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Appendix D. Saturation CNN architecture

Table D.4: Saturation CNN architecture. Conv3D denotes a 3D convolutional layer; c

denotes the number of channels in the layer output; k denotes the kernel (also refered as
filter) size; s denotes the size of the stride; BN denotes a batch normalization layer; ReLu
denotes a rectified linear layer, Add denotes a addition with the identity; UnSampling

denotes a unSampling layer that expands the matrix dimension using nearest neighbor
method, and Padding denotes a padding layer using the reflection padding technique.
In this model, the number of total parameters is 40,399,489 with 40,386,817 trainable
parameters and 12,672 non-trainable parameters.

Part Layer Output Shape
Input (96,200,24,1)
Encode 1 Conv3D(c32k3s2)/BN/ReLu (48,100,12,32)
Encode 2 Conv3D(c64k3s1)/BN/ReLu (48,100,12,64)
Encode 3 Conv3D(c128k3s2)/BN/ReLu (24,50,6,128)
Encode 4 Conv3D(c128k3s1)/BN/ReLu (24,50,6,128)
Encode 5 Conv3D(c256k3s2)/BN/ReLu (12,25,3,256)
Encode 6 Conv3D(c256k3s1)/BN/ReLu (12,25,3,256)
ResConv 1 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 2 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 3 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 4 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 5 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 6 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 7 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 8 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
Decode 6 UnSampling/Padding/Conv3D(c256k3s1)/BN/Relu (12,25,3,256)
Decode 5 UnSampling/Padding/Conv3D(c256k3s2)/BN/Relu (24,50,6,256)
Decode 4 UnSampling/Padding/Conv3D(c128k3s1)/BN/Relu (24,50,6,128)
Decode 3 UnSampling/Padding/Conv3D(c128k3s2)/BN/Relu (48,100,12,128)
Decode 2 UnSampling/Padding/Conv3D(c64k3s1)/BN/Relu (48,100,12,64)
Decode 1 UnSampling/Padding/Conv3D(c32k3s2)/BN/Relu (96,200,24,32)
Output Conv3D(c1k3s1) (96,200,24,1)
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Appendix E. Pressure CNN architecture

Table E.5: Pressure CNN architecture. Conv3D denotes a 3D convolutional layer; c denotes
the number of channels in the layer output; k denotes the kernel (also refered as filter)
size; s denotes the size of the stride; BN denotes a batch normalization layer; ReLu denotes
a rectified linear layer, Add denotes a addition with the identity; UnSampling denotes a
UnSampling layer that expands the matrix dimension using nearest neighbor method, and
Padding denotes a padding layer using the reflection padding technique. Total params:
33,316,481, trainable params: 33,305,857, non-trainable params: 10,624.

Part Layer Output Shape
Input (96,200,24,1)
Encode 1 Conv3D(c32k3s2)/BN/ReLu (48,100,12,32)
Encode 2 Conv3D(c64k3s1)/BN/ReLu (48,100,12,64)
Encode 3 Conv3D(c128k3s2)/BN/ReLu (24,50,6,128)
Encode 4 Conv3D(c128k3s1)/BN/ReLu (24,50,6,128)
Encode 5 Conv3D(c256k3s2)/BN/ReLu (12,25,3,256)
Encode 6 Conv3D(c256k3s1)/BN/ReLu (12,25,3,256)
ResConv 1 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 2 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 3 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 4 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 5 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
ResConv 6 Conv3D(c256k3s1)/BN/Conv3D(c256k3s1)/BN/ReLu/Add (12,25,3,256)
Decode 6 UnSampling/Padding/Conv3D(c256k3s1)/BN/Relu (12,25,3,256)
Decode 5 UnSampling/Padding/Conv3D(c256k3s2)/BN/Relu (24,50,6,256)
Decode 4 UnSampling/Padding/Conv3D(c128k3s1)/BN/Relu (24,50,6,128)
Decode 3 UnSampling/Padding/Conv3D(c128k3s2)/BN/Relu (48,100,12,128)
Decode 2 UnSampling/Padding/Conv3D(c64k3s1)/BN/Relu (48,100,12,64)
Decode 1 UnSampling/Padding/Conv3D(c32k3s2)/BN/Relu (96,200,24,32)
Output Conv3D(c1k3s1) (96,200,24,1)
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Appendix F. xCO2, yCO2, and fluid densities CNN architecture

Table F.6: xCO2, yCO2, gas phase density, and liquid phase density CNN architecture.
Conv3D denotes a 3D convolutional layer; c denotes the number of channels in the layer
output; k denotes the kernel (also referred to as filter) size; s denotes the size of the stride;
BN denotes a batch normalization layer; ReLu denotes an rectified linear activation layer,
Add denotes a addition with the identity; UnSampling denotes a UnSampling layer that
expands the matrix dimension using nearest neighbor method, and Padding denotes a
padding layer using the reflection padding technique. Total params: 8,337,057, trainable
params: 8,331,745, non-trainable params: 5,312.

Part Layer Output Shape
Input (96,200,24,3)
Encode 1 Conv3D(c16k3s2)/BN/ReLu (48,100,12,16)
Encode 2 Conv3D(c32k3s1)/BN/ReLu (48,100,12,32)
Encode 3 Conv3D(c64k3s2)/BN/ReLu (24,50,6,64)
Encode 4 Conv3D(c64k3s1)/BN/ReLu (24,50,6,64)
Encode 5 Conv3D(c128k3s2)/BN/ReLu (12,25,3,128)
Encode 6 Conv3D(c128k3s1)/BN/ReLu (12,25,3,128)
ResConv 1 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
ResConv 2 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
ResConv 3 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
ResConv 4 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
ResConv 5 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
ResConv 6 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
ResConv 7 Conv3D(c128k3s1)/BN/Conv3D(c128k3s1)/BN/ReLu/Add (12,25,3,128)
Decode 6 Unpool/Padding/Conv3D(c128k3s1)/BN/Relu (12,25,3,128)
Decode 5 Unpool/Padding/Conv3D(c128k3s2)/BN/Relu (24,50,6,128)
Decode 4 Unpool/Padding/Conv3D(c64k3s1)/BN/Relu (24,50,6,64)
Decode 3 Unpool/Padding/Conv3D(c64k3s2)/BN/Relu (48,100,12,64)
Decode 2 Unpool/Padding/Conv3D(c32k3s1)/BN/Relu (48,100,12,32)
Decode 1 Unpool/Padding/Conv3D(c16k3s2)/BN/Relu (96,200,24,16)
Output Conv3D(c1k3s1) (96,200,24,1)
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Appendix G. Multivariate regression

Using the data set described above, we randomly split 80% of the data
into the training set and 20% into the validation set to develop the rela-
tionship between sweep efficiency, solubility trapping and a large variety of
dimensionless variables. The variables include dimensionless numbers such as
Bond Number (Nb = ∆ρgbres/Pc where bres is reservoir thickness), Capillary
number (Nc), and Gravity number (Ng), as well as dimensionless reservoir
properties, including permeability (k/kref ), initial pressure (P/Pref ), injec-
tion rate (rinj/rref ), perforation thickness to reservoir thickness (bperf/bres
where bperf is perforation thickness), perforation depth to reservoir thickness
(lperf/bres where lperf is perforation depth from the reservior top), irreducible
water saturation (Swi), and capillary pressure curve scaling factor (λ in Equa-
tion 7). We also investigated various combinations and variations (such as
reciprocals) of these aforementioned variables.

Using those relationships to inform our model, we ran a sequence of single-
variable and multi-variable linear and nonlinear regressions on a training data
set. We used forward variable selection with criteria of R2, Adjusted R2,
and root mean squared error (RMSE) to assess the quality of the model.
The Adjusted R2 penalizes additional variables to reduce the number of
variables used in the prediction. Concurrently, we used the Normal Q-Q
plot to examine whether the residuals were normally distributed; the scale-
location plot to monitor the constant variance assumption; the residuals
versus fitted values plot to evaluate whether the data set shows non-constant
variance or non-linear trends; and the Cook’s distance plots to to identify
outliers that might significantly influence the model.

Using these diagnostic plots and the quality criterion, we discovered the
optimal model for sweep efficiency with Nb, rinj/rref , and Swi, and for solu-
bility trapping, a model with Swi, Nb, λ, kref/k, P/Pref , and T/Tref . Details
on the models’ parameters and criterion results are summarized in Table G.7.
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Table G.7: Prediction ranges, constants, quality criterion, and term standard errors for
the sweep efficiency and solubility trapping estimation equations. Standard error for each
term is calculated based on the the term value and the training set.

Sweep efficiency category parameter value unit
Prediction range Nb 10 to 450 -

rinj 0.02 to 2.0 MT/yr
Swi 0.1 to 0.3 -

Constant rref 1 MT/yr
ε 0.01266 -

Standard error ln(Nb) 3.56e-03 -
Nb 4.38e-05 -

ln(
rinj

rref
) 2.32e-03 -

Swi 3.02e-02 -
Quality criterion training RMSE 0.109 -

training R-Squared 0.964 -
training Adjusted R-Squared 0.964 -
validation RMSE 0.116 -
validation R-Squared 0.962 -
validation Adjusted R-Squared 0.962 -

Solubility trapping category parameter value unit
Prediction range Swi 0.1 to 0.3 -

Nb 10 to 450 -
k 5 to 1000 mD
λ 0.3 to 0.7 -
P 80 to 160 bar
T 40 to 100 C◦

Constant kref 1 mD
Pref 250 bar
Tref 40 C◦

ε 6.0165e-5 -
Standard error ln(Nb) 2.10e-04 -

kref

k
3.94e-03 -

λ 1.28e-03 -
Swi 2.42e-03 -

T
Tref

6.30e-04 -
P

Pref
2.27e-03 -

Quality criterion training RMSE 0.008 -
training R-Squared 0.845 -
training Adjusted R-Squared 0.845 -
validation RMSE 0.008 -
validation R-Squared 0.833 -
validation Adjusted R-Squared 0.834 -
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