

Outline

- Soil is a living system
 - How does soil sequester C?
- A deeper look at soil
 - Where does the carbon go?
 - What are the microbes doing?
- What can we do to increase C sequestration?

Can soil solve all our carbon issues?

"If the global soil carbon level was increased by 0.4%, or 4‰ per year, in the top 30-40 cm of soils, the annual increase in carbon dioxide in the atmosphere would be stopped."

-- https://www.4p1000.org

How does soil sequester C?

What we've known for a while

- Plant biomass is the driver for soil organic matter (SOM) formation
- Increasing SOM levels is slow and difficult
- Roots and root exudates contribute to SOM

How does soil sequester C?

What's new

- Humus is probably artefact of analysis methods
- Microbes transform C inputs into SOM
 - microbial necromass important component of SOM
- SOM protected from degradation by:
 - attachment to silt and clay particles
 - aggregate formation
- Roots and root exudates are most important C sources
 - up to 5x more likely to become SOM than above-ground plant parts

Building SOM

50-80% of SOM is simply dead microbial bodies. If you want to increase SOM, you must build microbial biomass.

Soil as a dynamic system of biogeochemical cycles driven by carbon (energy) inputs

- 1. Need energy
- 2. Need nutrients
- 3. Balance is dynamic

"If the global soil carbon level was increased by 0.4%, or 4‰ per year, in the top 30-40 cm of soils, the annual increase in carbon dioxide in the atmosphere would be stopped."

-- https://www.4p1000.org

But is 30-40 cm deep enough, or do we need to look deeper?

Soil Carbon Sequestration after 19 years of management at Russell Ranch Sustainable Agriculture Facility

Farming Systems

Conventional Mixed Organic **Fallow** Winter Winter Cover Cover Corn Corn Corn Crop Crop N-P-K **Tomato Tomato Tomato** Winter Winter Cover **Fallow** Cover Crop Crop **Poultry** Furrow Chemical manure irrigated fertilizer compost Cover crops: vetch, bell beans and oats

Carbon inputs

Surface vs. Deep Soil Inventories of Carbon Sequestration

Mixed Organic Conventional Cropping System 0-30 cm 0-30 cm 0-30 cm +7.9 Mg/ha △ Surface SOC

furrow Irrigation

Surface vs. Deep Soil Inventories of Carbon Sequestration

So what about the soil microbial communities?

Metagenomic analysis: organic soils are significantly enriched in carbon cycling genes compared to conventional soils at all depths.

Soil depth

(Relative abundance of assembled scaffolds)

What can we do to increase C sequestration?

Add organic amendments

- Slow release of nutrients over the course of the year
 - steady food supply for microbes
- Variety of organic compounds
 - promote metabolic diversity
 - feed range of soil cycles

Increase plant cover

- Soil cover for more of year
 - steady food supply
- Variety of exudates/dead roots
 - promote metabolic diversity
 - feed range of soil cycles
- Legumes
 - N inputs
- Plant repellents (e.g mustard)
 - reduce pests/pathogens

Improve root systems

Annual crop varieties have been bred for systems that provide water and mineral fertilizers.

- Maximized
 - above-ground biomass (fruits, leaves etc)
- Reduced
 - root system extent
 - root colonization by beneficial organisms
 - root exudates
 - organic mass when plants die

Reduce disturbance

- Stalk incorporation
- Weed suppression

Issues

- Loss of soil C
- Fungal symbiont network disturbance
- Compaction

Benefits

- Increased soil C near surface
- Improved soil structure

Issues

- Decreased soil C deeper?
- Herbicide use

How much C can soils sequester globally?

- 4‰ physically unrealistic
 - need too much N, P, K etc (close to double current fertilizer production)
- Other economical, political, social barriers

adapted from PNAS November 13, 2018 115 (46) 11652-11656

• 1-10% of current global CO₂ emission equivalents possible?

Take home messages

- Soil is a dynamic living system
- Need to consider deeper soil profiles when accounting for soil C
- To maximize C sequestration:
 - Add organic amendments
 - Increase plant cover
 - Improve root systems
 - Reduce disturbance

