Skip to content Skip to navigation

Improved process modeling for design, operation, and risk assessment


Modeling is essential to both understanding underlying physical phenomena in the geologic storage of CO2 and for optimization in the design, operation, and risk assessment of large storage projects.  Within this research theme topics will include the observation of important physical parameters of the CO2/water system from experiments to be used in simulations, integrating geochemical processes into efficient reservoir simulators, computational optimization of the design and operation of projects, and the development of models to quantify reservoir performance and project risk.  

Research Topics:

  • Physics of CO2/brine displacement using experiments and simulations.
  • Computational optimization for the design and operation of CO2 sequestration projects. 
  • System-level optimization of integrated energy systems involving renewable and fossil fuel based power generation combined with CO2 capture.
  • Development of a multiscale finite volume simulation framework for coupled flow and transport related to sequestration in saline aquifers and depleted oil reservoirs.
  • Development of moment equation based methods for quantification of reservoir performance prediction uncertainty.
  • Understanding the permeability of unconventional resources with respect to injection gas composition.
  • Investigation of the penetration of tight porous media by CO2 using core flooding and X-ray CT.




Hamdi Tchelepi, Lou Durlofsky, Adam Brandt, Sally Benson, Tony Kovscek


Related Research Programs:

Environmental Assessment & Optimization Group

SUPRI-B: Reservoir Simulation